Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

What Can Text Mining Tell Us About Lithium‐Ion Battery Researchers’ Habits?

Abstract : Artificial Intelligence (AI) has the promise of providing a paradigm shift in battery R&D by significantly accelerating the discovery and optimization of materials, interfaces, phenomena, and processes. However, the efficiency of any AI approach ultimately relies on rapid access to high-quality and interpretable large datasets. Scientific publications contain a tremendous wealth of relevant data and these can possibly, but not certainly, be used to develop reliable AI algorithms useful for battery R&D. To address this, we present here a text mining study wherein we unravel lithium-ion battery researchers' habits when reporting results, reason on how these habits link to issues of lacking reproducibility and discuss the remaining challenges to be tackled in order to develop a more credible and impactful AI for battery R&D.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.sorbonne-universite.fr/hal-03163309
Contributeur : Hal Sorbonne Université Gestionnaire Connectez-vous pour contacter le contributeur
Soumis le : mardi 9 mars 2021 - 11:01:52
Dernière modification le : lundi 11 octobre 2021 - 13:24:06
Archivage à long terme le : : jeudi 10 juin 2021 - 18:42:53

Fichier

batt.202000288.pdf
Publication financée par une institution

Identifiants

Citation

Hassna El‐bousiydy, Teo Lombardo, Emiliano Primo, Marc Duquesnoy, Mathieu Morcrette, et al.. What Can Text Mining Tell Us About Lithium‐Ion Battery Researchers’ Habits?. Batteries & Supercaps, Wiley, 2021, ⟨10.1002/batt.202000288⟩. ⟨hal-03163309⟩

Partager

Métriques

Consultations de la notice

310

Téléchargements de fichiers

416