Computing with bacterial constituents, cells and populations: from bioputing to bactoputing - Archive ouverte HAL Access content directly
Journal Articles (Review Article) Theorie in den Biowissenschaften / Theory in Biosciences Year : 2011

Computing with bacterial constituents, cells and populations: from bioputing to bactoputing

(1) , (2) , (3, 4) , (5) , (6, 7) , (8) , (9) , (10, 11) , (1) , (12) , (13, 14) , (15) , (16) , (17) , (18) , (19) , (20, 21) , (22) , (23) , (24) , (16) , (25) , (24)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Eric Fanchon
  • Function : Author
  • PersonId : 949973
Nicolas Glade
  • Function : Author
Francois Kepes
  • Function : Author

Abstract

The relevance of biological materials and processes to computing-alias bioputing-has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating.

Dates and versions

hal-00643738 , version 1 (22-11-2011)

Identifiers

Cite

Vic Norris, Abdallah Zemirline, Patrick Amar, Jean Nicolas Audinot, Pascal Ballet, et al.. Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theorie in den Biowissenschaften / Theory in Biosciences, 2011, 130 (3), pp.211-228. ⟨10.1007/s12064-010-0118-4⟩. ⟨hal-00643738⟩
2018 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More