Skip to Main content Skip to Navigation
Journal articles

Computation of the added masses of an unconventional airship

Abstract : This paper presents a modelling of an unmanned airship. We are studying a quadrotor flying wing. The modelling of this airship includes an aerodynamic study. A special focus is done on the computation of the added masses. Considering that the velocity potential of the air surrounding the airship obeys the Laplace's equation, the added masses matrix will be determined by means of the velocity potential flow theory. Typically, when the shape of the careen is quite different from that of an ellipsoid, designers in preprocessing prefer to avoid complications arising from mathematical analysis of the velocity potential. They use either complete numerical studies, or geometric approximation methods, although these methods can give relatively large differences compared to experimental measurements performed on the airship at the time of its completion. We tried to develop here as far as possible the mathematical analysis of the velocity potential flow of this unconventional shape using certain assumptions. The shape of the careen is assumed to be an elliptic cone. To retrieve the velocity potential shapes, we use the spheroconal coordinates. This leads to the Lamé's equations. The whole system of equations governing the interaction air-structure, including the boundary conditions, is solved in an analytical setting.
Complete list of metadata
Contributor : Frédéric Davesne Connect in order to contact the contributor
Submitted on : Tuesday, November 27, 2012 - 4:15:01 PM
Last modification on : Tuesday, June 30, 2020 - 11:56:07 AM

Links full text




Naoufel Azouz, Saïd Chaabani, Jean Lerbet, Azgal Abichou. Computation of the added masses of an unconventional airship. Journal of Applied Mathematics, Hindawi Publishing Corporation, 2012, ⟨10.1155/2012/714627⟩. ⟨hal-00757819⟩



Record views