Skip to Main content Skip to Navigation
Conference papers

Protein-protein interaction network inference with semi-supervised Output Kernel Regression

Celine Brouard 1 Marie Szafranski 2, 1 Florence d'Alché-Buc 3, 1 
3 AMIB - Algorithms and Models for Integrative Biology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France
Abstract : In this work, we address the problem of protein-protein interaction network inference as a semi-supervised output kernel learning problem. Using the kernel trick in the output space allows one to reduce the problem of learning from pairs to learning a single variable function with values in a Hilbert space. We turn to the Reproducing Kernel Hilbert Space theory devoted to vector- valued functions, which provides us with a general framework for output kernel regression. In this framework, we propose a novel method which allows to extend Output Kernel Regression to semi-supervised learning. We study the relevance of this approach on transductive link prediction using artificial data and a protein-protein interaction network of S. Cerevisiae using a very low percentage of labeled data.
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download
Contributor : Céline Brouard Connect in order to contact the contributor
Submitted on : Wednesday, June 5, 2013 - 9:34:35 AM
Last modification on : Sunday, June 26, 2022 - 11:58:58 AM
Long-term archiving on: : Friday, September 6, 2013 - 4:10:10 AM


Files produced by the author(s)


  • HAL Id : hal-00830428, version 1


Celine Brouard, Marie Szafranski, Florence d'Alché-Buc. Protein-protein interaction network inference with semi-supervised Output Kernel Regression. JOBIM, Jul 2012, Rennes, France. pp.133-136. ⟨hal-00830428⟩



Record views


Files downloads