A. Ben-hur and W. S. Noble, Kernel methods for predicting protein-protein interactions, Bioinformatics, vol.21, issue.Suppl 1, pp.38-46, 2005.
DOI : 10.1093/bioinformatics/bti1016

Y. Yamanishi, J. Vert, and M. Kanehisa, Protein network inference from multiple genomic data: a supervised approach, Bioinformatics, vol.20, issue.Suppl 1, pp.363-370, 2004.
DOI : 10.1093/bioinformatics/bth910

URL : https://hal.archives-ouvertes.fr/hal-00433586

P. Geurts and L. , Wehenkel and F. d'Alché-Buc, Kernelizing the output of tree-based methods, Proceedings of the 23th International Conference on Machine learning, 2006.

P. Geurts, N. Touleimat, and M. , Dutreix and F. d'Alché-Buc, Inferring biological networks with output kernel trees, BMC Bioinformatics, vol.8, 2007.

K. Bleakley, G. Biau, and J. Vert, Supervised reconstruction of biological networks with local models, Bioinformatics, vol.23, issue.13, pp.57-65, 2007.
DOI : 10.1093/bioinformatics/btm204

URL : https://hal.archives-ouvertes.fr/hal-00130277

T. Kato, K. Tsuda, and K. Asai, Selective integration of multiple biological data for supervised network inference, Bioinformatics, vol.21, issue.10, pp.2488-2495, 2005.
DOI : 10.1093/bioinformatics/bti339

K. Tsuda and W. S. Noble, Learning kernels from biological networks by maximizing entropy, Bioinformatics, vol.20, issue.Suppl 1, pp.326-333, 2004.
DOI : 10.1093/bioinformatics/bth906

R. I. Kondor and J. D. Lafferty, Diffusion Kernels on Graphs and Other Discrete Input Spaces, Proceedings of the 19th International Conference on Machine Learning, 2002.

E. Senkene and A. , Hilbert spaces of operator-valued functions, Mathematical Transactions of the Academy of Sciences of the Lithuanian SSR, vol.12, issue.No. 4, pp.665-670, 1973.
DOI : 10.1007/BF01630739

C. A. Micchelli and M. A. , On Learning Vector-Valued Functions, Neural Computation, vol.1, issue.1, pp.177-204, 2005.
DOI : 10.1109/34.735807

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf, Learning with Local and Global Consistency, Advances in Neural Information Processing Systems 16, 2004.

M. Belkin, P. Niyogi, and V. Sindhwani, Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples, Journal of Machine Learning Research, vol.7, pp.2399-2434, 2006.

C. Brouard, F. Buc, and M. Szafranski, Semi-supervised Penalized Output Kernel Regression for link prediction, Proceedings of the 28th International Conference on Machine Learning, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654123

C. Cortes, M. Mohri, and J. Weston, A general regression technique for learning transductions, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.153-160, 2005.
DOI : 10.1145/1102351.1102371