B. M. Niyogi-p, Semi-supervised learning on riemannian manifolds, Machine Learning, 2004.

B. M. and N. P. Sindhwani-v, Manifold regularization : A geometric framework for learning from labeled and unlabeled examples, J. Mach. Learn. Res, vol.7, 2006.

B. and H. A. Noble-w, Kernel methods for predicting protein?protein interactions, Bioinformatics, vol.21, issue.1, pp.38-46, 2005.

B. K. and B. G. Vert-j.-p, Supervised reconstruction of biological networks with local models, Bioinformatics, vol.23, 2007.

C. A. , M. C. , and P. M. Ying-y, Universal multitask kernels, J. Mach. Learn. Res, vol.9, 2008.

C. C. and M. M. Weston, A general regression technique for learning transductions, Proc. of the 22nd Intl. Conf. on Machine Learning, 2005.

G. P. Touleimat-n and D. , Inferring biological networks with output kernel trees, BMC Bioinformatics, vol.8, issue.2, p.4, 2007.

G. P. Wehenkel-l.-&-d-'alché and . F. Buc, Kernelizing the output of treebased methods, Proc. of the 23th Intl. Conf. on Machine learning, 2006.

G. A. , C. G. Pereira-f, and . Tishby-n, Euclidean embedding of co-occurrence data, J. Mach. Learn. Res, vol.8, 2007.

H. M. Von and M. C. Bork-p, Function prediction and protein networks, Current Opinion in Cell Biology, vol.15, issue.2, 2003.

K. H. Duflos-e, C. S. Preux-p, and . Davy-m, Nonlinear functional regression : a functional rkhs approach, JMLR Proc. of Intl. Conf. on Artificial Intelligence and Statistics, 2010.

K. H. Kato-t, Y. Y. , and S. M. Tsuda-k, Link propagation : A fast semi-supervised learning algorithm for link prediction, Proc. of the 9th SIAM Intl. Conf. on Data Mining, 2009.

K. T. and T. K. Asai-k, Selective integration of multiple biological data for supervised network inference, Bioinformatics, vol.21, 2005.

K. R. Lafferty-j, Diffusion kernels on graphs and other discrete input spaces, Proc. of the 19th Intl. Conf. on Machine Learning, 2002.

M. C. Pontil-m, On learning vector-valued functions, Neural Computation, p.17, 2005.

M. K. Griffiths-t and . Jordan-m, Nonparametric latent feature models for link prediction, Advances in Neural Information Processing Systems 22, 2009.

S. E. Tempel-'man, Hilbert spaces of operator-valued functions, Lithuanian Mathematical Journal, vol.13, issue.4, 1973.

T. B. Wong-m and A. P. Koller-d, Link prediction in relational data, Advances in Neural Information Processing Systems 15, 2003.

Y. Y. Vert-j.-p and . Kanehisa-m, Protein network inference from multiple genomic data : a supervised approach, Bioinformatics, p.20, 2004.

Z. D. Bousquet-o, W. N. Lal-t, and . Schölkopf-b, Learning with local and global consistency, Advances in Neural Information Processing Systems 16, 2004.