B. Udd and R. Krahe, The myotonic dystrophies: molecular, clinical, and therapeutic challenges, Lancet Neurol, vol.11, pp.891-905, 2012.

J. Buxton, P. Shelbourne, J. Davies, C. Jones, T. Van-tongeren et al., Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy, Nature, vol.355, pp.547-548, 1992.

J. D. Brook, M. E. Mccurrach, H. G. Harley, A. J. Buckler, D. Church et al., Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3? end of a transcript encoding a protein kinase family member, Cell, vol.68, pp.799-808, 1992.

H. G. Harley, J. D. Brook, S. A. Rundle, S. Crow, W. Reardon et al., Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy, Nature, vol.355, pp.545-546, 1992.

M. Mahadevan, C. Tsilfidis, L. Sabourin, G. Shutler, C. Amemiya et al., , 1992.

, Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene, Science, vol.255, pp.1253-1255

C. Aslanidis, G. Jansen, C. Amemiya, G. Shutler, M. Mahadevan et al., Cloning of the essential myotonic dystrophy region and mapping of the putative defect, Nature, vol.355, pp.548-551, 1992.

P. Kaliman and E. Llagostera, Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1, Cell Signal, vol.20, pp.1935-1941, 2008.

Y. H. Fu, A. Pizzuti, R. G. Fenwick, . Jr, J. King et al., An unstable triplet repeat in a gene related to myotonic muscular dystrophy, Science, vol.255, pp.1256-1258, 1992.

N. De-temmerman, K. Sermon, S. Seneca, M. De-rycke, P. Hilven et al., Intergenerational instability of the expanded CTG repeat in the DMPK gene: studies in human gametes and preimplantation embryos, Am. J. Hum. Genet, vol.75, pp.325-329, 2004.

F. Morales, J. M. Couto, C. F. Higham, G. Hogg, P. Cuenca et al., Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity, Hum. Mol. Genet, vol.21, pp.3558-3567, 2012.

M. Gomes-pereira, T. A. Cooper, and G. Gourdon, Myotonic dystrophy mouse models: towards rational therapy development, Trends Mol. Med, vol.17, pp.506-517, 2011.

K. L. Taneja, M. Mccurrach, M. Schalling, D. Housman, and R. H. Singer, Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues, J. Cell Biol, vol.128, pp.995-1002, 1995.

M. Fardaei, K. Larkin, J. D. Brook, and M. G. Hamshere, In vivo co-localisation of MBNL protein with DMPK expanded-repeat transcripts, Nucleic Acids Res, vol.29, pp.2766-2771, 2001.

A. V. Philips, L. T. Timchenko, and T. A. Cooper, Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy, Science, vol.280, pp.737-741, 1998.

R. S. Savkur, A. V. Philips, and T. A. Cooper, Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy, Nat. Genet, vol.29, pp.40-47, 2001.

R. N. Kanadia, K. A. Johnstone, A. Mankodi, C. Lungu, C. A. Thornton et al., A muscleblind knockout model for myotonic dystrophy, Science, vol.302, 1978.

T. H. Ho, B. N. Charlet, M. G. Poulos, G. Singh, M. S. Swanson et al., Muscleblind proteins regulate alternative splicing, EMBO J, vol.23, pp.3103-3112, 2004.

X. Lin, J. W. Miller, A. Mankodi, R. N. Kanadia, Y. Yuan et al., Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy, Hum. Mol. Genet, vol.15, pp.2087-2097, 2006.

H. Han, M. Irimia, P. J. Ross, H. K. Sung, B. Alipanahi et al., MBNL proteins repress ES-cell-specific alternative splicing and reprogramming, Nature, vol.498, pp.241-245, 2013.

M. Nakamori, K. Sobczak, A. Puwanant, S. Welle, K. Eichinger et al., Splicing biomarkers of disease severity in myotonic dystrophy, Ann. Neurol, vol.74, pp.862-872, 2013.

A. F. Klein, S. Dastidar, D. Furling, and M. K. Chuah, Therapeutic Approaches for Dominant Muscle Diseases: Highlight on Myotonic Dystrophy. Curr, vol.15, pp.329-337, 2015.

D. Furling, G. Doucet, M. A. Langlois, L. Timchenko, E. Belanger et al., Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions, Gene Ther, vol.10, pp.795-802, 2003.

V. Francois, A. F. Klein, C. Beley, A. Jollet, C. Lemercier et al., Selective silencing of mutated mRNAs in DM1 by using modified hU7-snRNAs, Nat. Struct. Mol. Biol, vol.18, pp.85-87, 2011.

T. M. Wheeler, A. J. Leger, S. K. Pandey, A. R. Macleod, M. Nakamori et al., Targeting nuclear RNA for in vivo correction of myotonic dystrophy, Nature, vol.488, pp.111-115, 2012.

W. Zhang, Y. Wang, S. Dong, R. Choudhury, Y. Jin et al., Treatment of type 1 myotonic dystrophy by engineering site-specific RNA endonucleases that target (CUG)(n) repeats, Mol. Ther, vol.22, pp.312-320, 2014.

R. Batra, D. A. Nelles, E. Pirie, S. M. Blue, R. J. Marina et al., Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9, Cell, vol.170, pp.899-912, 2017.

R. N. Kanadia, J. Shin, Y. Yuan, S. G. Beattie, T. M. Wheeler et al., Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy, Proc. Natl. Acad. Sci. U S A, vol.103, pp.11748-11753, 2006.

T. M. Wheeler, K. Sobczak, J. D. Lueck, R. J. Osborne, X. Lin et al., Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA, Science, vol.325, pp.336-339, 2009.

M. B. Warf, M. Nakamori, C. M. Matthys, C. A. Thornton, and J. A. Berglund, , 2009.

, Pentamidine reverses the splicing defects associated with myotonic dystrophy, Proc. Natl. Acad. Sci. U S A, vol.106, pp.18551-18556

A. Garcia-lopez, B. Llamusi, M. Orzaez, E. Perez-paya, and R. D. Artero, In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models, Proc. Natl. Acad. Sci. U S A, vol.108, pp.11866-11871, 2011.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

T. I. Cornu, C. Mussolino, and T. Cathomen, Refining strategies to translate genome editing to the clinic, Nat. Med, vol.23, pp.415-423, 2017.

P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell et al., RNA-guided human genome engineering via Cas9, Science, vol.339, pp.823-826, 2013.

C. Long, L. Amoasii, A. A. Mireault, J. R. Mcanally, H. Li et al., , 2016.

, Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy, Science, vol.351, pp.400-403

C. E. Nelson, C. H. Hakim, D. G. Ousterout, P. I. Thakore, E. A. Moreb et al., In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy, Science, vol.351, pp.403-407, 2016.

M. Tabebordbar, K. Zhu, J. K. Cheng, W. L. Chew, J. J. Widrick et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells, Science, vol.351, pp.407-411, 2016.

C. E. Nelson, J. N. Robinson-hamm, and C. A. Gersbach, Genome engineering: a new approach to gene therapy for neuromuscular disorders, Nat. Rev. Neurol, vol.13, pp.647-661, 2017.

H. Xie, L. Tang, X. He, X. Liu, C. Zhou et al., SaCas9 Requires 5'-NNGRRT-3' PAM for Sufficient Cleavage and Possesses Higher Cleavage Activity than SpCas9 or FnCpf1 in Human Cells, Biotechnol. J, vol.13, p.1700561, 2018.

G. Gourdon, F. Radvanyi, A. S. Lia, C. Duros, M. Blanche et al., , 1997.

, Moderate intergenerational and somatic instability of a 55-CTG repeat in transgenic mice, Nat. Genet, vol.15, pp.190-192

M. Gomes-pereira, L. Foiry, A. Nicole, A. Huguet, C. Junien et al., CTG trinucleotide repeat "big jumps": large expansions, small mice, PLoS Genet, p.52, 2007.

Y. Zhang, N. Heidrich, B. J. Ampattu, C. W. Gunderson, H. S. Seifert et al., Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis, Mol. Cell, vol.50, pp.488-503, 2013.

M. Lo-scrudato, S. Martin, G. Gourdon, D. Furling, and A. Buj-bello, Genome editing for nucleotide repeat disorders: towards a new therapeutic approach for Myotonic Dystrophy type 1, Mol. Ther, vol.24, pp.129-130, 2016.

F. A. Ran, L. Cong, W. X. Yan, D. A. Scott, J. S. Gootenberg et al., In vivo genome editing using Staphylococcus aureus Cas9, Nature, vol.520, pp.186-191, 2015.

E. K. Brinkman, T. Chen, M. Amendola, and B. Van-steensel, Easy quantitative assessment of genome editing by sequence trace decomposition, Nucleic Acids Res, vol.42, p.168, 2014.

L. Arandel, M. Polay-espinoza, M. Matloka, A. Bazinet, D. De-dea-diniz et al., Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds, Dis. Model. Mech, vol.10, pp.487-497, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519721

G. Imbert, C. Kretz, K. Johnson, and J. L. Mandel, Origin of the expansion mutation in myotonic dystrophy, Nat. Genet, vol.4, pp.72-76, 1993.

A. Huguet, F. Medja, A. Nicole, A. Vignaud, C. Guiraud-dogan et al., , 2012.

, Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus, PLoS Genet, vol.8, p.1003043

A. Buj-bello, F. Fougerousse, Y. Schwab, N. Messaddeq, D. Spehner et al., AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis, Hum. Mol. Genet, vol.17, pp.2132-2143, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00311078

K. T. Jensen, L. Floe, T. S. Petersen, J. Huang, F. Xu et al., Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency, FEBS Lett, vol.591, pp.1892-1901, 2017.

E. L. Van-agtmaal, L. M. Andre, M. Willemse, S. A. Cumming, I. D. Van-kessel et al., CRISPR/Cas9-Induced (CTGCAG)n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing, Mol. Ther, vol.25, pp.24-43, 2017.

C. Provenzano, M. Cappella, R. Valaperta, R. Cardani, G. Meola et al., , 2017.

. Crispr/cas9, Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients, Mol. Ther. Nucleic Acids, vol.9, pp.337-348

S. Dastidar, S. Ardui, K. Singh, D. Majumdar, N. Nair et al., Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patientderived iPS and myogenic cells, Nucleic Acids Res, vol.46, pp.8275-8298, 2018.

Y. Gao, X. Guo, K. Santostefano, Y. Wang, T. Reid et al., Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy, Mol. Ther, vol.24, pp.1378-1387, 2016.

G. F. Richard, Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy?, Trends Genet, vol.31, pp.177-186, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01370705

V. Mosbach, L. Poggi, D. Viterbo, M. Charpentier, and G. F. Richard, TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats, Cell Rep, vol.22, pp.2146-2159, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727334

C. Cinesi, L. Aeschbach, B. Yang, and V. Dion, Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase, Nat. Commun, vol.7, p.13272, 2016.

B. S. Pinto, T. Saxena, R. Oliveira, H. R. Mendez-gomez, J. D. Cleary et al., Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9, Mol. Cell, vol.68, pp.479-490, 2017.

N. E. Bengtsson, J. K. Hall, G. L. Odom, M. P. Phelps, C. R. Andrus et al., Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy, Nat. Commun, vol.8, p.14454, 2017.

L. Amoasii, J. C. Hildyard, H. Li, E. Sanchez-ortiz, A. Mireault et al., Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy, 2018.

A. Cantore, M. Ranzani, C. C. Bartholomae, M. Volpin, P. D. Valle et al., , 2015.

, Liver-directed lentiviral gene therapy in a dog model of hemophilia B, Sci. Transl. Med, vol.7, pp.277-228

X. Li, E. M. Eastman, R. J. Schwartz, and R. Draghia-akli, Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences, Nat. Biotechnol, vol.17, pp.241-245, 1999.

N. Daniele, C. Moal, L. Julien, M. Marinello, T. Jamet et al., Intravenous Administration of a MTMR2-Encoding AAV Vector Ameliorates the Phenotype of Myotubular Myopathy in Mice, J. Neuropathol. Exp. Neurol, vol.77, pp.282-295, 2018.

H. Seznec, A. S. Lia-baldini, C. Duros, C. Fouquet, C. Lacroix et al., Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability, Hum. Mol. Genet, vol.9, pp.1185-1194, 2000.

. Taneja, Localization of trinucleotide repeat sequences in Myotonic Distrophy cells using a single fluorochrome-labeled PNA probe, BioTechniques, vol.24, pp.472-476, 1998.

H. Seznec, O. Agbulut, N. Sergeant, C. Savouret, A. Ghestem et al., Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities, Hum. Mol. Genet, vol.10, pp.2717-2726, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00179658

J. Zhang, K. Kobert, T. Flouri, and A. Stamatakis, PEAR: a fast and accurate Illumina Paired-End reAd mergeR, Bioinformatics, vol.30, pp.614-620, 2014.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, p.10, 2011.

K. Clement, H. Rees, M. C. Canver, J. M. Gehrke, R. Farouni et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis, Nat. Biotechnol, vol.37, pp.224-226, 2019.

, Genomic DNA from non-transduced cells (NT) and cells transduced with only one lentiviral vector (SaCas9 or sgRNA, MOI 50) was used as controls. (C) Percentage of DMPK CTG repeats independent biological replicates ± SD. Statistical analysis by two-tailed Student ttest

, DM1 myoblast clones were isolated from the bulk population after transduction with lentiviral vectors; isolated clones were analyzed for the presence of nuclear foci (A) and presence of DMPK CTG repeats (B to F). (A) FISH-IF images of a representative DM1 myoblast clone without foci (DM1-Delta clone 22); DM1 clones nontransduced (DM1) or transduced with MOI 50 of a lentiviral vector expressing SaCas9 (DM1-Cas9) or sgRNA 4-23 only (DM1-sgRNA) were used as control. SaCas9 (?-HA) is shown in red, GFP in green, RNA foci in yellow, Figure 3. Deletion of Expanded CTG Repeats and Foci Disappearance in DM1 Myoblasts Treated with CRISPR-SaCas9

, Statistical analysis with two-tailed Student's t test. ***: P < 0.001. (C) Total number of myonuclei per fiber in TA of wild-type (WT) and homozygous (HMZ) mice 4 weeks after injection of either PBS or rAAV9-SaCas9 + rAAV9-sgRNA 4-23 vectors. Data are represented as means ± SD (N=3 for WT mice; N=10 for HMZ mice), vol.10