Incorporation of 2,3-Diaminopropionic Acid into Linear Cationic Amphipathic Peptides Produces pH-Sensitive Vectors

Abstract : Nonviral vectors that harness the change in pH in endosomes, are increasingly being used to deliver cargoes, including nucleic acids, into mammalian cells. Here we present evidence that the pK(a) of the beta-NH(2) in 2,3-diaminopropionic acid (Dap) is sufficiently lowered, when Dap is incorporated into peptides, that its protonation state is sensitive to the pH changes that occur during endosomal acidification. The lowered pK(a) of around 6.3 is stabilized by the increased electron-withdrawing effect of the peptide bonds, by intermolecular hydrogen bonding and from contributions arising from the peptide conformation. These include mixed polar/apolar environments, Coulombic interactions and intermolecular hydrogen bonding. Changes in the charged state are therefore expected between pH 5 and 7, and large-scale conformational changes are observed in Dap-rich peptides, in contrast to analogues containing lysine or ornithine, when the pH is altered through this range. These physical properties confer a robust gene-delivery capability on designed cationic amphipathic peptides that incorporate Dap.
Complete list of metadatas

https://hal-univ-evry.archives-ouvertes.fr/hal-02179234
Contributor : Berangere Bertin <>
Submitted on : Wednesday, July 10, 2019 - 3:36:05 PM
Last modification on : Friday, July 12, 2019 - 1:16:34 AM

Links full text

Identifiers

Citation

Yun Lan, Vincenzo Abbate, Berangere Bertin, Louic Vermeer, Xiaole Kong, et al.. Incorporation of 2,3-Diaminopropionic Acid into Linear Cationic Amphipathic Peptides Produces pH-Sensitive Vectors. ChemBioChem, Wiley-VCH Verlag, 2010, 11 (9), pp.1266-1272. ⟨10.1002/cbic.201000073⟩. ⟨hal-02179234⟩

Share

Metrics

Record views

27