D. W. Cleveland, S. Y. Hwo, and M. W. Kirschner, Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, J Mol Biol, vol.116, pp.227-247, 1977.

C. Ballatore, V. M. Lee, and J. Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders, Nat Rev Neurosci, vol.8, pp.663-672, 2007.

L. M. Ittner and J. Gotz, Amyloid-beta and tau-a toxic pas de deux in Alzheimer's disease, Nat Rev Neurosci, vol.12, pp.65-72, 2011.

K. S. Kosik, C. L. Joachim, and D. J. Selkoe, Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc Natl Acad Sci U S A, vol.83, pp.4044-4048, 1986.

N. Gustke, B. Trinczek, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Domains of tau protein and interactions with microtubules, Biochemistry, vol.33, pp.9511-9522, 1994.

M. Morris, S. Maeda, K. Vossel, and L. Mucke, The many faces of tau, Neuron, vol.70, pp.410-426, 2011.

G. Lee and S. L. Rook, Expression of tau protein in non-neuronal cells: microtubule binding and stabilization, J Cell Sci, vol.102, issue.2, pp.227-237, 1992.

D. N. Drechsel, A. A. Hyman, M. H. Cobb, and M. W. Kirschner, Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau, Mol Biol Cell, vol.3, pp.1141-1154, 1992.

H. Kadavath, R. V. Hofele, J. Biernat, S. Kumar, K. Tepper et al., Tau stabilizes microtubules by binding at the interface between tubulin heterodimers, Proc Natl Acad Sci U S A, vol.112, pp.7501-7506, 2015.

J. M. Bunker, L. Wilson, M. A. Jordan, and S. C. Feinstein, Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration, Mol Biol Cell, vol.15, pp.2720-2728, 2004.

G. Breuzard, P. Hubert, R. Nouar, D. Bessa, T. Devred et al., Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells, J Cell Sci, vol.126, pp.2810-2819, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01458234

I. Grundke-iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski et al., Abnormal phosphorylation of the microtubuleassociated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc Natl Acad Sci U S A, vol.83, pp.4913-4917, 1986.

A. C. Alonso, I. Grundke-iqbal, and K. Iqbal, Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules, Nat Med, vol.2, pp.783-787, 1996.

G. Lindwall and R. D. Cole, Phosphorylation affects the ability of tau protein to promote microtubule assembly, J Biol Chem, vol.259, pp.5301-5305, 1984.

J. Busciglio, A. Lorenzo, J. Yeh, and B. A. Yankner, beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding, Neuron, vol.14, pp.879-888, 1995.

A. Peters and J. E. Vaughn, Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves, J Cell Biol, vol.32, pp.113-119, 1967.

K. M. Yamada, B. S. Spooner, and N. K. Wessells, Ultrastructure and function of growth cones and axons of cultured nerve cells, J Cell Biol, vol.49, pp.614-635, 1971.

A. Schulz, S. L. Baader, M. Niwa-kawakita, M. J. Jung, R. Bauer et al., Merlin isoform 2 in neurofibromatosis type 2-associated polyneuropathy, Nat Neurosci, vol.16, pp.426-433, 2013.

S. Quraishe, C. M. Cowan, and A. Mudher, NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy, Mol Psychiatry, vol.18, pp.834-842, 2013.

R. Stephan, B. Goellner, E. Moreno, C. A. Frank, T. Hugenschmidt et al., Hierarchical microtubule organization controls axon caliber and transport and determines synaptic structure and stability, Bioessays, vol.33, pp.1017-1025, 2004.

A. Marx, J. Pless, E. M. Mandelkow, and E. Mandelkow, On the rigidity of the cytoskeleton: are MAPs crosslinkers or spacers of microtubules?, Cell Mol Biol, vol.46, pp.949-965, 2000.

R. Mukhopadhyay and J. H. Hoh, AFM force measurements on microtubule-associated proteins: the projection domain exerts a long-range repulsive force, FEBS Lett, vol.505, pp.374-378, 2001.

K. J. Rosenberg, J. L. Ross, H. E. Feinstein, S. C. Feinstein, and J. Israelachvili, Complementary dimerization of microtubule-associated tau protein: implications for microtubule bundling and tau-mediated pathogenesis, Proc Natl Acad Sci U S A, vol.105, pp.7445-7450, 2008.

Y. Kanai, J. Chen, and N. Hirokawa, Microtubule bundling by tau proteins in vivo: analysis of functional domains, EMBO J, vol.11, pp.3953-3961, 1992.

Y. Kanai, R. Takemura, T. Oshima, H. Mori, Y. Ihara et al., Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA, J Cell Biol, vol.109, pp.1173-1184, 1989.

P. J. Chung, M. C. Choi, H. P. Miller, H. E. Feinstein, U. Raviv et al., Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules, Proc Natl Acad Sci U S A, vol.112, pp.6416-6425, 2015.

M. H. Hinrichs, A. Jalal, B. Brenner, E. Mandelkow, S. Kumar et al., Tau protein diffuses along the microtubule lattice, J Biol Chem, vol.287, pp.38559-38568, 2012.

O. Bounedjah, L. Hamon, P. Savarin, B. Desforges, P. A. Curmi et al., Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes, J Biol Chem, vol.287, pp.2446-2458, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00703432

D. J. Needleman, M. A. Ojeda-lopez, U. Raviv, K. Ewert, H. P. Miller et al., Radial compression of microtubules and the mechanism of action of taxol and associated proteins, Biophys J, vol.89, pp.3410-3423, 2005.

J. Chen, Y. Kanai, N. J. Cowan, and N. Hirokawa, Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons, Nature, vol.360, pp.674-677, 1992.

P. W. Baas, T. P. Pienkowski, and K. S. Kosik, Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization, J Cell Biol, vol.115, pp.1333-1344, 1991.

T. Rodriguez-martin, I. Cuchillo-ibanez, W. Noble, F. Nyenya, B. H. Anderton et al., Tau phosphorylation affects its axonal transport and degradation, Neurobiol Aging, vol.34, pp.2146-2157, 2013.

W. Yu and P. W. Baas, Changes in microtubule number and length during axon differentiation, J Neurosci, vol.14, pp.2818-2829, 1994.

, Role of tau in the spatial organization of axonal microtubules: keeping parallel? 3759

K. R. Brunden, B. Zhang, J. Carroll, Y. Yao, J. S. Potuzak et al., Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy, J Neurosci, vol.30, pp.13861-13866, 2010.

Y. Liu, K. Lv, Z. Li, A. C. Yu, J. Chen et al., PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability, J Biol Chem, vol.287, pp.39911-39924, 2012.

M. K. Schaefer, H. Schmalbruch, E. Buhler, C. Lopez, N. Martin et al., Progressive motor neuronopathy: a critical role of the tubulin chaperone TBCE in axonal tubulin routing from the Golgi apparatus, J Neurosci, vol.27, pp.8779-8789, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00195963

S. L. Palay, C. Sotelo, A. Peters, and P. M. Orkand, The axon hillock and the initial segment, J Cell Biol, vol.38, pp.193-201, 1968.

J. R. Cooper and L. Wordeman, The diffusive interaction of microtubule binding proteins, Curr Opin Cell Biol, vol.21, pp.68-73, 2009.

W. J. Brittain and S. Minko, A structural definition of polymer brushes, J Polym Sci, Part A: Polym Chem, vol.45, pp.3505-3512, 2007.

L. I. Binder, A. Frankfurter, and L. I. Rebhun, The distribution of tau in the mammalian central nervous system, J Cell Biol, vol.101, pp.1371-1378, 1985.

D. G. Drubin, S. C. Feinstein, E. M. Shooter, and M. W. Kirschner, Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors, J Cell Biol, vol.101, pp.1799-1807, 1985.

S. Khatoon, I. Grundke-iqbal, and K. Iqbal, Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: a radioimmuno-slot-blot assay for nanograms of the protein, J Neurochem, vol.59, pp.750-753, 1992.

G. Hiller and K. Weber, Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues, Cell, vol.14, pp.795-804, 1978.

L. Conway, M. W. Gramlich, A. Tabei, S. M. Ross, and J. L. , Microtubule orientation and spacing within bundles is critical for long-range kinesin-1 motility, Cytoskeleton (Hoboken), vol.71, pp.595-610, 2014.

L. Hamon, P. Savarin, P. A. Curmi, and D. Pastre, Rapid assembly and collective behavior of microtubule bundles in the presence of polyamines, Biophys J, vol.101, pp.205-216, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00703430

R. Brandt and G. Lee, Functional organization of microtubuleassociated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro, J Biol Chem, vol.268, pp.3414-3419, 1993.

M. C. Choi, U. Raviv, H. P. Miller, M. R. Gaylord, E. Kiris et al., Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: a synchrotron x-ray scattering study, Biophys J, vol.97, pp.519-527, 2009.

C. W. Scott, A. B. Klika, M. M. Lo, T. E. Norris, and C. B. Caputo, Tau protein induces bundling of microtubules in vitro: comparison of different tau isoforms and a tau protein fragment, J Neurosci Res, vol.33, pp.19-29, 1992.

E. J. Aamodt and J. G. Culotti, Microtubules and microtubuleassociated proteins from the nematode Caenorhabditis elegans: periodic cross-links connect microtubules in vitro, J Cell Biol, vol.103, pp.23-31, 1986.

B. L. Goode, P. E. Denis, D. Panda, M. J. Radeke, H. P. Miller et al., Functional interactions between the prolinerich and repeat regions of tau enhance microtubule binding and assembly, Mol Biol Cell, vol.8, pp.353-365, 1997.

P. B. Schiff and S. B. Horwitz, Taxol stabilizes microtubules in mouse fibroblast cells, Proc Natl Acad Sci U S A, vol.77, pp.1561-1565, 1980.

J. M. Askham, K. T. Vaughan, H. V. Goodson, and E. E. Morrison, Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome, Mol Biol Cell, vol.13, pp.3627-3645, 2002.

A. Errico, A. Ballabio, and E. I. Rugarli, Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics, Hum Mol Genet, vol.11, pp.153-163, 2002.

B. Desforges, P. Savarin, O. Bounedjah, S. Delga, L. Hamon et al., Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity, Am J Physiol Cell Physiol, vol.301, pp.705-716, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00703429

M. M. Black, T. Slaughter, S. Moshiach, M. Obrocka, and I. Fischer, Tau is enriched on dynamic microtubules in the distal region of growing axons, J Neurosci, vol.16, pp.3601-3619, 1996.

S. T. Milner, Polymer brushes, Science, vol.251, pp.905-914, 1991.

M. R. Smyda and S. C. Harvey, The entropic cost of polymer confinement, J Phys Chem B, vol.116, pp.10928-10934, 2012.

S. J. Peter and M. R. Mofrad, Computational modeling of axonal microtubule bundles under tension, Biophys J, vol.102, pp.749-757, 2012.

K. Stamer, R. Vogel, E. Thies, E. Mandelkow, and E. M. Mandelkow, Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J Cell Biol, vol.156, pp.1051-1063, 2002.

E. M. Mandelkow, K. Stamer, R. Vogel, E. Thies, and E. Mandelkow, Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses, Neurobiol Aging, vol.24, pp.1079-1085, 2003.

M. Dubey, P. Chaudhury, H. Kabiru, and T. B. Shea, Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability, Cell Motil Cytoskelet, vol.65, pp.89-99, 2008.

A. Ebneth, R. Godemann, K. Stamer, S. Illenberger, B. Trinczek et al., Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease, J Cell Biol, vol.143, pp.777-794, 1998.

T. Bullmann, M. Holzer, H. Mori, and T. Arendt, Pattern of tau isoforms expression during development in vivo, Int J Dev Neurosci, vol.27, pp.591-597, 2009.

G. J. Gu, H. Lund, D. Wu, A. Blokzijl, C. Classon et al., Role of individual MARK isoforms in phosphorylation of tau at Ser, NeuroMol Med, vol.15, issue.2, pp.458-469, 2013.

W. Noble, D. P. Hanger, C. C. Miller, and S. Lovestone, The importance of tau phosphorylation for neurodegenerative diseases, Front Neurol, vol.4, p.83, 2013.

L. Hamon, P. A. Curmi, and D. Pastre, High-resolution imaging of microtubules and cytoskeleton structures by atomic force microscopy, Methods Cell Biol, vol.95, pp.157-174, 2010.

L. Danglot, A. Triller, and A. Bessis, Association of gephyrin with synaptic and extrasynaptic GABAA receptors varies during development in cultured hippocampal neurons, Mol cell Neurosci, vol.23, pp.264-278, 2003.