S. C. Weber and C. P. Brangwynne, Getting RNA and protein in phase, Cell, vol.149, pp.1188-1191, 2012.

M. Ramaswami, J. P. Taylor, and R. Parker, Altered ribostasis: RNA-protein granules in degenerative disorders, Cell, vol.154, pp.727-736, 2013.

D. Updike and S. Strome, P granule assembly and function in Caenorhabditis elegans germ cells, J. Androl, vol.31, pp.53-60, 2010.

L. Liu-yesucevitz, G. J. Bassell, A. D. Gitler, A. C. Hart, E. Klann et al., Local RNA translation at the synapse and in disease, J. Neurosci, vol.31, pp.16086-16093, 2011.

R. Parker and U. Sheth, P bodies and the control of mRNA translation and degradation, Mol. Cell, vol.25, pp.635-646, 2007.

P. Anderson and N. Kedersha, Stress granules: the Tao of RNA triage, Trends Biochem. Sci, vol.33, pp.141-150, 2008.

N. Kedersha, S. Chen, N. Gilks, W. Li, I. J. Miller et al., Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules, Mol. Biol. Cell, vol.13, pp.195-210, 2002.

J. R. Buchan and R. Parker, Eukaryotic stress granules: the ins and outs of translation, Mol. Cell, vol.36, pp.932-941, 2009.

M. Kato, T. W. Han, S. Xie, K. Shi, X. Du et al., Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels, Cell, vol.149, pp.753-767, 2012.

T. W. Han, M. Kato, S. Xie, L. C. Wu, H. Mirzaei et al., Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies, Cell, vol.149, pp.768-779, 2012.

A. Castello, B. Fischer, K. Eichelbaum, R. Horos, B. M. Beckmann et al., Insights into RNA biology from an atlas of mammalian mRNA-binding proteins, Cell, vol.149, pp.1393-1406, 2012.

N. Gilks, N. Kedersha, M. Ayodele, L. Shen, G. Stoecklin et al., Stress granule assembly is mediated by prion-like aggregation of TIA-1, Mol. Biol. Cell, vol.15, pp.5383-5398, 2004.

F. De-leeuw, T. Zhang, C. Wauquier, G. Huez, V. Kruys et al., The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor, Exp. Cell Res, vol.313, pp.4130-4144, 2007.

H. Tourriere, K. Chebli, L. Zekri, B. Courselaud, J. M. Blanchard et al., The RasGAP-associated endoribonuclease G3BP assembles stress granules, J. Cell Biol, vol.160, pp.823-831, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02199834

A. Wilczynska, C. Aigueperse, M. Kress, F. Dautry, and D. Weil, The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules, J. Cell Sci, vol.118, pp.981-992, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02263136

J. Gal, J. Zhang, D. M. Kwinter, J. Zhai, H. Jia et al., Nuclear localization sequence of FUS and induction of stress granules by ALS mutants, Neurobiol. Aging, vol.32, pp.2323-2327, 2011.

A. Cassola and A. C. Frasch, An RNA recognition motif mediates the nucleocytoplasmic transport of a trypanosome RNA-binding protein, J. Biol. Chem, vol.284, pp.35015-35028, 2009.

T. Zhang, N. Delestienne, G. Huez, V. Kruys, and C. Gueydan, Identification of the sequence determinants mediating the nucleo-cytoplasmic shuttling of TIAR and TIA-1 RNA-binding proteins, J. Cell Sci, vol.118, pp.5453-5463, 2005.

N. L. Kedersha, M. Gupta, W. Li, I. Miller, and P. Anderson, RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules, J. Cell Biol, vol.147, pp.1431-1442, 1999.

S. R. Kimball, R. L. Horetsky, D. Ron, L. S. Jefferson, and H. P. Harding, Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes, Am. J. Physiol. Cell Physiol, vol.284, pp.273-284, 2003.

N. Kedersha, M. R. Cho, W. Li, P. W. Yacono, S. Chen et al., Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules, J. Cell Biol, vol.151, pp.1257-1268, 2000.

R. Mazroui, R. Sukarieh, M. E. Bordeleau, R. J. Kaufman, P. Northcote et al., Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation, Mol. Biol. Cell, vol.17, pp.4212-4219, 2006.

S. Mollet, N. Cougot, A. Wilczynska, F. Dautry, M. Kress et al., Translationally repressed mRNA transiently cycles through stress granules during stress, Mol. Biol. Cell, vol.19, pp.4469-4479, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02263139

F. Brandt, L. A. Carlson, F. U. Hartl, W. Baumeister, and K. Grunewald, The three-dimensional organization of polyribosomes in intact human cells, Mol. Cell, vol.39, pp.560-569, 2010.

J. L. Guerquin-kern, T. D. Wu, C. Quintana, and A. Croisy, Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy), Biochim. Biophys. Acta, vol.1724, pp.228-238, 2005.

V. Evdokimova, P. Ruzanov, H. Imataka, B. Raught, Y. Svitkin et al., The major mRNA-associated protein YB-1 is a potent 5 cap-dependent mRNA stabilizer, EMBO J, vol.20, pp.5491-5502, 2001.

, Nucleic Acids Research, vol.42, issue.13, p.8691, 2014.

S. S. Peng, C. Y. Chen, N. Xu, and A. B. Shyu, RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein, EMBO J, vol.17, pp.3461-3470, 1998.

M. A. Skabkin, O. I. Kiselyova, K. G. Chernov, A. V. Sorokin, E. V. Dubrovin et al., Structural organization of mRNA complexes with major core mRNP protein YB-1, Nucleic Acids Res, vol.32, pp.5621-5635, 2004.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

C. Lechene, F. Hillion, G. Mcmahon, D. Benson, A. M. Kleinfeld et al., High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry, J. Biol, vol.5, p.20, 2006.

D. Pastre, L. Hamon, F. Landousy, I. Sorel, M. O. David et al., Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths, Langmuir, vol.22, pp.6651-6660, 2006.

S. Souquere, S. Mollet, M. Kress, F. Dautry, G. Pierron et al., Unravelling the ultrastructure of stress granules and associated P-bodies in human cells, J. Cell Sci, vol.122, pp.3619-3626, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02252274

H. Onishi, Y. Kino, T. Morita, E. Futai, N. Sasagawa et al., MBNL1 associates with YB-1 in cytoplasmic stress granules, J. Neurosci. Res, vol.86, 1994.

R. R. Kopito, Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol, vol.10, pp.524-530, 2000.

G. Jego, A. Hazoume, R. Seigneuric, and C. Garrido, Targeting heat shock proteins in cancer, Cancer Lett, vol.332, pp.275-285, 2013.

Y. Q. Wei, X. Zhao, Y. Kariya, H. Fukata, K. Teshigawara et al., Induction of apoptosis by quercetin: involvement of heat shock protein, Cancer Res, vol.54, pp.4952-4957, 1994.

R. Mazroui, S. Di-marco, R. J. Kaufman, and I. E. Gallouzi, Inhibition of the ubiquitin-proteasome system induces stress granule formation, Mol. Biol. Cell, vol.18, pp.2603-2618, 2007.

S. Kwon, Y. Zhang, and P. Matthias, The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response, Genes Dev, vol.21, pp.3381-3394, 2007.

V. Evdokimova, P. Ruzanov, M. S. Anglesio, A. V. Sorokin, L. P. Ovchinnikov et al., Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species, Mol. Cell. Biol, vol.26, pp.277-292, 2006.

T. Tanaka, S. Ohashi, and S. Kobayashi, Roles of YB-1 under arsenite-induced stress: Translational activation of HSP70 mRNA and control of the number of stress granules, Biochim. Biophys. Acta, vol.1840, pp.985-992, 2013.

L. Hamon, D. Pastre, P. Dupaigne, C. Le-breton, E. Le-cam et al., High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein-DNA complexes, Nucleic Acids Res, vol.35, p.58, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02295472

D. M. Prescott, D. Myerson, and J. Wallace, Enucleation of mammalian cells with cytochalasin B. Exp, Cell Res, vol.71, pp.480-485, 1972.

P. A. Ivanov, E. M. Chudinova, and E. S. Nadezhdina, RNP stress-granule formation is inhibited by microtubule disruption, Cell Biol. Int, vol.27, pp.207-208, 2003.

X. C. Fan and J. A. Steitz, HNS, a nuclear-cytoplasmic shuttling sequence in HuR, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.15293-15298, 1998.

C. G. Burd and G. Dreyfuss, Conserved structures and diversity of functions of RNA-binding proteins, Science, vol.265, pp.615-621, 1994.

W. Wang, H. Furneaux, H. Cheng, M. C. Caldwell, D. Hutter et al., HuR regulates p21 mRNA stabilization by UV light, Mol. Cell. Biol, vol.20, pp.760-769, 2000.

T. Kawai, A. Lal, X. Yang, S. Galban, K. Mazan-mamczarz et al., Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR, Mol. Cell. Biol, vol.26, pp.3295-3307, 2006.

R. Pullmann, H. H. Kim, K. Abdelmohsen, A. Lal, J. L. Martindale et al., Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs, Mol. Cell. Biol, vol.27, pp.6265-6278, 2007.

N. V. Jammi, L. R. Whitby, and P. A. Beal, Small molecule inhibitors of the RNA-dependent protein kinase, Biochem. Biophys. Res. Commun, vol.308, pp.50-57, 2003.

H. M. Chen, L. Wang, and S. R. Mello, A chemical compound commonly used to inhibit PKR, {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g] benzothiazol-7-one}, protects neurons by inhibiting cyclin-dependent kinase, Eur. J. Neurosci, vol.28, pp.2003-2016, 2008.

R. J. Ellis, Macromolecular crowding: obvious but underappreciated, Trends Biochem. Sci, vol.26, pp.597-604, 2001.

N. A. Baker, D. Sept, S. Joseph, M. J. Holst, and J. A. Mccammon, Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.10037-10041, 2001.

Y. Arava, Y. Wang, J. D. Storey, C. L. Liu, P. O. Brown et al., Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.3889-3894, 2003.

J. C. Schwartz, X. Wang, E. R. Podell, and T. R. Cech, RNA seeds higher-order assembly of FUS protein, Cell Rep, vol.5, pp.918-925, 2013.

J. F. Gillooly, A. P. Allen, J. H. Brown, J. J. Elser, C. Martinez-del-rio et al., The metabolic basis of whole-organism RNA and phosphorus content, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.11923-11927, 2005.

B. Desforges, P. A. Curmi, O. Bounedjah, S. Nakib, L. Hamon et al., An intercellular polyamine transfer via gap junctions regulates proliferation and response to stress in epithelial cells, Mol. Biol. Cell, vol.24, pp.1529-1543, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02292186

C. M. Dewey, B. Cenik, C. F. Sephton, B. A. Johnson, J. Herz et al., TDP-43 aggregation in neurodegeneration: are stress granules the key?, Brain Res, vol.1462, pp.16-25, 2012.

O. D. King, A. D. Gitler, and J. Shorter, The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease, Brain Res, vol.1462, pp.61-80, 2012.

Y. R. Li, O. D. King, J. Shorter, and A. D. Gitler, Stress granules as crucibles of ALS pathogenesis, at UCSF Library and Center for Knowledge Management on December, vol.201, pp.361-372, 2013.