, Give the MDD representation of the function f 2 given in Figure 2 considering the variables A and B in the reverse order (i.e. first B, then A). Then transform the obtained MDD into an IDD (labelling the edges with integer intervals

, connected in a negative circuit (each component represses its successor in the circuit, and is repressed by its predecessor): Assuming Boolean levels for A, B and C, all interaction thresholds are equal to 1, Consider the genetic regulatory network called repressilator as defined by Elowitz and Leibler [16], which consists of three genes (denoted here A, B and C)

C. Agapakis and P. Silver, Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks, Mol Biosyst, vol.5, issue.7, pp.704-717, 2009.

R. Albert and H. G. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster, J. Theor. Biol, vol.223, issue.1, pp.1-18, 2003.

S. Basu, Y. Gerchman, C. H. Collins, F. H. Arnold, and R. Weiss, A synthetic multicellular system for programmed pattern formation, Nature, vol.434, issue.7037, pp.1130-1134, 2005.

F. Bause, P. Kemper, and P. Kritzinger, Forschungsbericht Nr. 563 des Fachbereichs Informatik der Universität Dortmund (Germany), pp.9-27, 1994.

R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. Comput, vol.35, issue.8, pp.677-91, 1986.

C. Chaouiya, E. Remy, P. Ruet, and D. Thieffry, Qualitative modelling of genetic networks: From logical regulatory graphs to standard Petri nets, ICATPN'04, vol.3099, pp.137-56, 2004.

C. Chaouiya, E. Remy, and D. Thieffry, Qualitative Petri net modelling of genetic networks, Trans Comp Syst Biol, issue.4220, pp.95-112, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00310988

. Cdssz-mc, Tools for the symbolic analysis of bounded petri nets

C. Chaouiya, A. Naldi, E. Remy, and D. Thieffry, Petri net representation of multi-valued logical regulatory networks. Natural Computing

C. Chaouiya, E. Remy, B. Mossé, and D. Thieffry, Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework, POSTA'03, vol.294, pp.119-145, 2003.

C. Chaouiya, E. Remy, and D. Thieffry, Petri net modelling of biological regulatory networks, Journal of Discrete Algorithms, vol.6, issue.2, pp.165-77, 2008.

M. Chaves, R. Albert, and E. D. Sontag, Robustness and fragility of boolean models for genetic regulatory networks, J. Theor. Biol, vol.235, issue.3, pp.431-480, 2005.

. Jp, H. Comet, S. Klaudel, and . Liauzu, Modeling multi-valued genetic regulatory networks using high-level Petri nets, ICATPN'05, vol.3536, pp.208-235, 2005.

H. Jong, Modeling and simulation of genetic regulatory systems: a literature review, J. Comput Biol, vol.1, issue.9, pp.67-103, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00072606

D. A. Drubin, J. C. Way, and P. A. Silver, Designing biological systems, Genes Dev, vol.21, issue.3, pp.242-54, 2007.

M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, vol.403, issue.6767, pp.335-343, 2000.

A. Fauré, A. Naldi, C. Chaouiya, A. Ciliberto, and D. Thieffry, Modular logical modelling of the budding yeast cell cycle, Molecular BioSystems, vol.5, pp.1787-96, 2009.

A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry, Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, vol.22, issue.14, pp.124-155, 2006.

S. F. Gilbert, Developmental Biology. Sunderland, 2006.

. Ginsim, Gene interaction network simulation

N. T. Ingolia, Topology and robustness in the drosophila segment polarity network, PLoS Biol, vol.2, issue.6, p.123, 2004.

T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-vincentelli, Multivalued Decision Diagrams: Theory and applications, International Journal on Multiple-Valued Logic, vol.4, pp.9-62, 1998.

S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetics nets, J. Theor. Biol, vol.22, pp.437-67, 1969.

H. Klaudel and F. Pommereau, M-nets: a survey, Acta Informatica, vol.45, pp.537-64, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00870484

L. Mendoza, A network model for the control of the differentiation process in Th cells, Biosystems, vol.84, issue.2, pp.101-115, 2006.

S. Mirschel, K. Steinmetz, M. Rempel, M. Ginkel, and E. D. Gilles, ProMoT: Modularmodeling for systems biology, Bioinformatics, vol.25, issue.5, pp.687-696, 2009.

A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry et al., Logical modelling of regulatory networks with GINsim 2.3, Biosystems, vol.97, issue.2, pp.134-143, 2009.

A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya, A reduction of logical regulatory graphs preserving essential dynamical properties, CMSB'09, vol.5688, pp.266-80, 2009.

A. Naldi, D. Thieffry, and C. Chaouiya, Decision diagrams for the representation of logical models of regulatory networks, CMSB'07, vol.4695, pp.233-280, 2007.

. Pnml and . Org, The reference site for the Petri Net Markup Language

F. Pommereau, Quickly prototyping Petri nets tools with SNAKES, PNTAP'08, vol.33, pp.1-10, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02309814

J. Saez-rodriguez, L. Simeoni, J. A. Lindquist, A. Hemenway, U. Bommhardt et al., A logical model provides insights into T cell receptor signaling, PLoS Comput Biol, vol.3, issue.8, p.163, 2007.

L. Sánchez, C. Chaouiya, and D. Thieffry, Segmenting the fly embryo: a logical analysis of the segment polarity cross-regulatory module, Int. J. Dev. Biol, vol.52, issue.8, pp.1059-75, 2008.

L. Sánchez and D. Thieffry, A logical analysis of the Drosophila gap-gene system, J. Theor. Biol, vol.211, issue.2, pp.115-156, 2001.

L. Sánchez and D. Thieffry, Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module, J. Theor. Biol, vol.224, issue.4, pp.517-554, 2003.

T. Schlitt and A. Brazma, Current approaches to gene regulatory network modelling, BMC Bioinformatics, vol.8, issue.6, p.9, 2007.

. Ca, R. Shaffer, J. J. Randhawa, and . Tyson, The role of composition and aggregation in modeling macromolecular regulatory networks, Proc of the Winter Simulation Conf, pp.1628-1664, 2006.

E. Simão, E. Remy, D. Thieffry, and C. Chaouiya, Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli, Bioinformatics, vol.21, issue.21, pp.190-196, 2005.

L. J. Steggles, R. Banks, O. Shaw, and A. Wipat, Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach, Bioinformatics, vol.23, issue.3, pp.336-379, 2007.

K. Strehl and . Thiele, Interval diagrams for efficient symbolic verification of process networks, IEEE Transactions On Computer-Aided Design of Integrated Circuits and Systems, vol.19, issue.8, pp.939-56, 2000.

R. Thomas, Boolean formalisation of genetic control circuits, J. Theor. Biol, vol.42, pp.565-83, 1973.

R. Thomas, Regulatory networks seen as asynchronous automata: A logical description, J. Theor. Biol, vol.153, pp.1-23, 1991.

R. Thomas, D. Thieffry, and M. Kaufman, Dynamical behaviour of biological regulatory networks-I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state, Bull. Math. Biol, vol.57, pp.247-76, 1995.

T. , Time petri net analyzer

G. Dassow and G. M. Odell, Design and constraints of the drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches, J. Exp. Zool, vol.294, issue.3, pp.179-215, 2002.

L. Wolpert, . Beddington, . Brockes, . Jessell, E. Lawrence et al., Principles of development, 2006.