J. Schlessinger, Receptor tyrosine kinases: Legacy of the first two decades, Cold Spring Harb. Perspect. Biol, vol.6, p.8912, 2014.

J. Mendelsohn and J. Baselga, Epidermal growth factor receptor targeting in cancer, Semin. Oncol, vol.33, pp.369-385, 2006.

R. S. Herbst, M. Fukuoka, and J. Baselga, Gefitinib-A novel targeted approach to treating cancer, Nat. Rev. Cancer, vol.4, pp.956-965, 2004.

L. F. Allen, I. A. Eiseman, D. W. Fry, and P. F. Lenehan, CI-1033, an irreversible pan-erbB receptor inhibitor and its potential application for the treatment of breast cancer, Semin. Oncol, vol.30, pp.65-78, 2003.

H. Cheng, S. K. Nair, and B. W. Murray, Recent progress on third generation covalent EGFR inhibitors, Bioorg. Med. Chem. Lett, vol.26, pp.1861-1868, 2016.

X. Wang, D. Goldstein, P. J. Crowe, and J. Yang, Next-generation EGFR/HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: A review of the evidence, OncoTargets Ther, vol.9, pp.5461-5473, 2016.

Y. S. Bae, S. W. Kang, M. S. Seo, I. C. Baines, E. Takle et al., Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation, J. Biol. Chem, vol.272, pp.217-221, 1997.

C. E. Paulsen, T. H. Truong, F. J. Garcia, A. Homann, V. Gupta et al., Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat. Chem. Biol, vol.8, pp.57-64, 2012.

T. H. Truong, P. M. Ung, P. B. .-u.;-palde, C. E. Paulsen, A. Schlessinger et al., Molecular Basis for Redox Activation of Epidermal Growth Factor Receptor Kinase, Cell Chem. Biol, vol.23, pp.837-848, 2016.

E. Ferrari, M. Tinti, S. Costa, S. Corallino, A. P. Nardozza et al., Identification of New Substrates of the Protein-tyrosine Phosphatase PTP1B by Bayesian Integration of Proteome Evidence, J. Biol. Chem, vol.286, pp.4173-4185, 2011.

C. L. Arteaga, T. T. Ramsey, L. K. Shawver, and C. A. Guyer, Unliganded epidermal growth factor receptor dimerization induced by direct interaction of quinazolines with the ATP binding site, J. Biol. Chem, vol.272, pp.23247-23254, 1997.

A. D. Burdick, J. W. Davis, K. J. Ii;-liu, L. G. Hudson, H. Shi et al., Benzo(a)pyrene Quinones Increase Cell Proliferation, Generate Reactive Oxygen Species, and Transactivate the Epidermal Growth Factor Receptor in Breast Epithelial Cells, Cancer Res, vol.63, pp.7825-7833, 2003.

V. Sakanyan, P. Hulin, R. Alves-de-sousa, V. A. Silva, A. Hambardzumyan et al., Activation of EGFR by small compounds through coupling the generation of hydrogen peroxide to stable dimerization of Cu/Zn SOD1, Sci. Rep, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01279094

V. Sakanyan, Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview, vol.7, p.12, 2018.

Z. Yin, C. Pascual, and D. J. Klionsky, Autophagy: Machinery and regulation, Microb. Cell, vol.3, pp.588-596, 2016.

L. K. Goh and A. Sorkin, Endocytosis of receptor tyrosine kinases, Cold Spring Harb. Perspect. Biol, 2013.

S. Sigismund, V. Algisi, G. Nappo, A. Conte, R. Pascolutti et al., Threshold-controlled ubiquitination of the EGFR directs receptor fate, EMBO J, vol.32, pp.2140-2157, 2013.

Y. Nishimura, B. Bereczky, and M. Ono, The EGFR inhibitor gefitinib suppresses ligand-stimulated endocytosis of EGFR via the early/late endocytic pathway in non-small cell lung cancer cell lines, Histochem. Cell Biol, vol.127, pp.541-553, 2007.

Y. Saito, S. Moriya, H. Kazama, K. Hirasawa, K. Miyahara et al., Amino acid starvation culture condition sensitizes EGFR-expressing cancer cell lines to gefitinib-mediated cytotoxicity by inducing atypical necroptosis, Int. J. Oncol, vol.52, pp.1165-1177, 2018.

A. Vlahakis and J. Debnath, The Interconnections between Autophagy and Integrin-Mediated Cell Adhesion, J. Mol. Biol, vol.429, pp.515-530, 2017.

R. V. Sionov, Z. Granot, and S. A. Vlahopoulos, Regulation of Bim in Health and Disease, Oncotarget, vol.6, pp.23058-23134, 2015.

S. M. Frisch and H. Francis, Disruption of epithelial cell-matrix interactions induces apoptosis, J. Cell Biol, vol.124, pp.619-626, 1994.

P. Paoli, E. Giannoni, and P. Chiarugi, Anoikis molecular pathways and its role in cancer progression, Biochim. Biophys. Acta Mol. Cell Res, vol.1833, pp.3481-3498, 2013.

X. Qi, G. M. Wildey, and P. H. Howe, Evidence That Ser87 of BimEL Is Phosphorylated by Akt and Regulates BimEL Apoptotic Function, J. Biol. Chem, vol.281, pp.813-823, 2006.

R. Ley, K. E. Ewings, K. Hadfield, and S. J. Cook, Regulatory phosphorylation of Bim: Sorting out the ERK from the JNK, Cell Death Differ, vol.12, pp.1008-1014, 2005.

C. L. Buchheit, B. L. Angarola, A. Steiner, K. J. Weigel, and Z. T. Schafer, Anoikis evasion in inflammatory breast cancer cells is mediated by Bim-EL sequestration, Cell Death Differ, vol.22, pp.1275-1286, 2015.

M. A. Iradyan, N. S. Iradyan, A. A. Hambardzumyan, N. S. Minasyan, C. Roussakis et al., Synthesis of furfuryl derivatives of 4-allyl-1-(4-hydroxy-3-nitrobenzyl)-3-[2-(4-alkoxyphenyl)-quinolin-4-yl]-4,5-dihydro-1H-1,2,4-triazole-5-thions and their toxicity in cancer cells, Chem. J. Arm, vol.71, pp.559-570, 2018.

S. A. Avetyan, A. S. Azaryan, and A. A. Aroyan, Quinoline derivatives V. Some derivatives of 2-(4-alkoxyphenyl)quinolin-4-carboxylic acids, Arm. Chem. J, vol.26, pp.763-767, 1973.

M. A. Iradyan, N. S. Iradyan, A. A. Hambardzumyn, H. A. Panosyan, R. A. Tamazyan et al., Selective N-, S-alkylation of 4-allyl-3-[2-(4-alkoxyphenyl)-quinolin-4-yl]-4,5-dihydro-1h-1,2,4-triazole-5-thiones with substituted benzylchlorides. synthesis, docking analysis and cytotoxic action, Chem. J. Arm, vol.71, pp.389-406, 2018.

J. Filmus, M. N. Pollak, R. Cailleau, and R. N. Buick, MDA-468, a human breast cancer cell line with a high number of epidermal growth factor (EGF) receptors, has an amplified EGF receptor gene and is growth inhibited by EGF, Biochem. Biophys. Res. Commun, vol.128, pp.898-905, 1985.

Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J, vol.19, pp.5720-5728, 2000.

D. Brunner, J. Frank, H. Appl, H. Schoffl, W. Pfaller et al., Serum-free cell culture: The serum-free media interactive online database, ALTEX, vol.27, pp.53-62, 2010.

L. Ferrer-soler, A. Vazquez-martin, J. Brunet, J. A. Menendez, R. De-llorens et al., An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: Gefitinib (Iressa)-induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (Review), Int. J. Mol. Med, vol.20, pp.3-10, 2007.

D. Seth, K. Shaw, J. Jazayeri, and P. J. Leedman, Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-? in human prostate cancer cells, Br. J. Cancer, vol.80, pp.657-669, 1999.

Y. Kawakita, M. Seto, T. Ohashi, T. Tamura, T. Yusa et al., Design and synthesis of novel pyrimido[4,5-b]azepine derivatives as HER2/EGFR dual inhibitors, Bioorg. Med. Chem, vol.21, pp.2250-2261, 2013.

Y. Jia, M. Manuia, J. Juarez, G. Lelais, M. Didonato et al., Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors, Nature, vol.534, pp.129-132, 2016.

S. Wang, Y. Song, and D. Liu, EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance, Cancer Lett, vol.385, pp.51-54, 2017.

C. Fung, R. Lock, S. Gao, E. Salas, and J. Debnath, Induction of autophagy during extracellular matrix detachment promotes cell survival, Mol. Biol. Cell, vol.19, pp.797-806, 2008.

M. J. Reginato, K. R. Mills, J. K. Paulus, D. K. Lynch, D. C. Sgroi et al., Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis, Nat. Cell Biol, vol.5, pp.733-740, 2003.

D. B. Costa, B. Halmos, A. Kumar, S. T. Schumer, M. S. Huberman et al., BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations, PLoS Med, vol.4, pp.1669-1680, 2007.

M. S. Cragg, J. Kuroda, H. Puthalakath, D. C. Huang, and A. Strasser, Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics, PLoS Med, vol.4, pp.1681-1690, 2007.

J. Kale, E. J. Osterlund, and D. W. Andrews, BCL-2 family proteins: Changing partners in the dance towards death, Cell Death Differ, vol.25, pp.65-80, 2018.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

A. Salazar, M. Keusgen, A. Salazar, and J. Von-hagen, Amino acids in the cultivation of mammalian cells, Amino Acids, vol.48, pp.1161-1171, 2016.

B. J. Altman, Z. E. Stine, and C. V. Dang, From Krebs to clinic: Glutamine metabolism to cancer therapy, Nat. Rev. Cancer, vol.16, pp.619-634, 2016.

J. Tong, P. Taylor, and M. F. Moran, Proteomic Analysis of the Epidermal Growth Factor Receptor (EGFR) Interactome and Post-translational Modifications Associated with Receptor Endocytosis in Response to EGF and Stress, Mol. Cell. Proteom, vol.13, pp.1644-1658, 2014.

Y. Miyata, H. Nakamoto, and L. Neckers, The therapeutic target Hsp90 and cancer hallmarks, Curr. Pharm. Des, vol.19, pp.347-365, 2013.

J. Zhang, N. N. Pavlova, and C. B. Thompson, Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine, vol.36, pp.1302-1315, 2017.

M. Momcilovic, S. T. Bailey, J. T. Lee, M. C. Fishbein, C. Magyar et al., Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer, vol.18, pp.601-610, 2017.

A. Citri, D. Harari, G. Shohat, P. Ramakrishnan, J. Gan et al., Hsp90 Recognizes a Common Surface on Client Kinases, J. Biol. Chem, vol.281, pp.14361-14369, 2006.

Y. Wei, Z. Zou, N. Becker, M. Anderson, R. Sumpter et al., EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance, Cell, vol.154, pp.1269-1284, 2013.

M. Wang, A. Shen, C. Zhang, Z. Song, J. Ai et al., Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions, J. Med. Chem, vol.59, pp.5563-5586, 2016.

P. Zhou, R. Bogacki, L. Mcreynolds, and P. M. Howley, Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins, Mol. Cell, vol.6, pp.751-756, 2000.

K. M. Sakamoto, K. B. Kim, A. Kumagai, F. Mercurio, C. M. Crews et al., Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation, Proc. Natl. Acad. Sci, vol.98, pp.8554-8559, 2001.

G. M. Burslem, B. E. Smith, A. C. Lai, S. Jaime-figueroa, D. C. Mcquaid et al., The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study, Cell Chem. Biol, vol.25, pp.67-77, 2018.

T. Akiyama, C. R. Dass, and P. F. Choong, Bim-targeted cancer therapy: A link between drug action and underlying molecular changes, Mol. Cancer Ther, vol.8, pp.3173-3180, 2009.

S. Zhu, P. Zhao, R. Ma, X. Yan, C. Yun et al., Structural insights into drug development strategy targeting EGFR T790M/C797S. Oncotarget, vol.9, pp.13652-13665, 2018.

M. A. Ojemuyiwa, R. A. Madan, and W. L. Dahut, Tyrosine kinase inhibitors in the treatment of prostate cancer: Taking the next step in clinical development, Expert Opin. Emerg. Drugs, vol.19, pp.459-470, 2014.

M. A. Iradyan, N. S. Iradyan, A. A. Hambardzumyan, L. E. Nersesyan, A. S. Aharonyan et al., Docking analysis and some biological properties of furfuryl derivatives of 4-allyl-5-[2-(4-alkoxyphenyl) quinolin-4-yl, Biol. J. Arm, vol.70, pp.100-107, 2018.

L. L. Vindelov, Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. A new method for rapid isolation and straining of nuclei, Virchows Arch. B Cell Pathol, vol.24, pp.227-242, 1977.

G. Yeretssian, M. Lecocq, G. Lebon, H. C. Hurst, and V. Sakanyan, Competition on nitrocellulose-immobilized antibody arrays. From bacterial protein binding assay to protein profiling in breast cancer cells, Mol. Cell. Proteom, vol.4, pp.605-617, 2005.

O. Trott and A. J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem, pp.455-461, 2010.

D. Van-der-spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark et al., GROMACS: Fast, flexible, and free, J. Comput. Chem, vol.26, pp.1701-1718, 2005.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general Amber force field, J. Comput. Chem, vol.25, pp.1157-1174, 2004.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys, vol.81, pp.3684-3690, 1984.

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph, vol.14, pp.33-38, 1996.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI