W. Kuhlbrandt, Biology, structure and mechanism of P-type ATPases, Nat Rev Mol Cell Biol, vol.5, pp.282-295, 2004.

J. D. Gitlin, Gastroenterology, vol.125, pp.1868-1877, 2003.

A. Ala, A. P. Walker, K. Ashkan, J. S. Dooley, and M. L. Schilsky, Wilson's disease, The Lancet, vol.369, pp.397-408, 2007.

S. M. Kenney and D. W. Cox, Sequence variation database for the Wilson disease copper transporter, ATP7B, Hum Mutat, vol.28, pp.1171-1177, 2007.

K. Caca, P. Ferenci, H. Kühn, C. Polli, and H. Willgerodt, High prevalence of the H1069Q mutation in East German patients with Wilson disease: rapid detection of mutations by limited sequencing and phenotype-genotype analysis, Journal of Hepatology, vol.35, pp.575-581, 2001.

E. K. Kim, O. J. Yoo, K. Y. Song, H. W. Yoo, and S. Y. Choi, Identification of three novel mutations and a high frequency of the Arg778Leu mutation in Korean patients with Wilson disease, Hum Mutat, vol.11, pp.275-278, 1998.

R. E. Tanzi, K. Petrukhin, I. Chernov, J. L. Pellequer, and W. Wasco, The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene, Nat Genet, vol.5, pp.344-350, 1993.

S. Lutsenko, E. S. Leshane, and U. Shinde, Biochemical basis of regulation of human copper-transporting ATPases, Arch Biochem Biophys, vol.463, pp.134-148, 2007.

L. Fontaine, S. Mercer, and J. F. , Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis, Arch Biochem Biophys, vol.463, pp.149-167, 2007.

G. Hsi, L. M. Cullen, G. Macintyre, M. M. Chen, and D. M. Glerum, Sequence variation in the ATP-binding domain of the Wilson disease transporter, ATP7B, affects copper transport in a yeast model system, Hum Mutat, vol.29, pp.491-501, 2008.

O. Dmitriev, R. Tsivkovskii, F. Abildgaard, C. T. Morgan, and J. L. Markley, Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations, Proc Natl Acad Sci, vol.103, pp.5302-5307, 2006.

D. Achila, L. Banci, I. Bertini, J. Bunce, and S. Ciofi-baffoni, Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake, Proc Natl Acad Sci, vol.103, pp.5729-5734, 2006.

L. Banci, I. Bertini, F. Cantini, A. C. Rosenzweig, and L. A. Yatsunyk, Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1, Biochemistry, vol.47, pp.7423-7429, 2008.

L. Banci, I. Bertini, F. Cantini, M. Migliardi, and G. Natile, Solution structures of the actuator domain of ATP7A and ATP7B, the Menkes and Wilson disease proteins, Biochemistry, vol.48, pp.7849-7855, 2009.

R. G. Efremov, Y. A. Kosinsky, D. E. Nolde, R. Tsivkovskii, and A. S. Arseniev, Molecular modelling of the nucleotide-binding domain of Wilson's disease protein: location of the ATP-binding site, domain dynamics and potential effects of the major disease mutations, Biochem J, vol.382, pp.293-305, 2004.

A. Rodriguez-granillo, E. Sedlak, and P. Wittung-stafshede, Stability and ATP binding of the nucleotide-binding domain of the Wilson disease protein: effect of the common H1069Q mutation, J Mol Biol, vol.383, pp.1097-1111, 2008.

C. T. Morgan, R. Tsivkovskii, Y. A. Kosinsky, R. G. Efremov, and S. Lutsenko, The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F, J Biol Chem, vol.279, pp.36363-36371, 2004.

M. Bramkamp, K. Altendorf, and J. C. Greie, Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli, Mol Membr Biol, vol.24, pp.375-386, 2007.

S. Horslen and S. H. Hahn, Genotype-phenotype correlation in Wilson disease, J Clin Gastroenterol, vol.44, pp.387-388, 2010.

M. Kubala, ATP-binding to P-type ATPases as revealed by biochemical, spectroscopic, and crystallographic experiments, Proteins, vol.64, pp.1-12, 2006.

J. Okkeri, L. Laakkonen, and T. Haltia, The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP, Biochem J, vol.377, pp.95-105, 2004.

Y. Shen and A. Bax, Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology, J Biomol NMR, vol.38, pp.289-302, 2007.

T. Dudev and C. Lim, Principles governing Mg, Ca, and Zn binding and selectivity in proteins, Chem Rev, vol.103, pp.773-788, 2003.

R. Linz and S. Lutsenko, Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins, J Bioenerg Biomembr, vol.39, pp.403-407, 2007.

R. Tsivkovskii, J. F. Eisses, J. H. Kaplan, and S. Lutsenko, Functional properties of the copper-transporting ATPase ATP7B (the Wilson's disease protein) expressed in insect cells, J Biol Chem, vol.277, pp.976-983, 2002.

L. Banci, I. Bertini, F. Cantini, S. Inagaki, and M. Migliardi, The binding mode of ATP revealed by the solution structure of the N-domain of human ATP7A, J Biol Chem, vol.285, pp.2537-2544, 2010.

C. Toyoshima and T. Mizutani, Crystal structure of the calcium pump with a bound ATP analogue, Nature, vol.430, pp.529-535, 2004.

T. Tsuda and C. Toyoshima, Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase, The EMBO Journal, vol.28, pp.1782-1791, 2009.

P. Gourdon, X. Liu, T. Skjørringe, J. P. Morth, and L. Møller, Crystal structure of a copper-transporting PIB-type ATPase, Nature, vol.475, pp.59-64, 2011.

G. Patchornik, R. Goldshleger, and S. J. Karlish, The complex ATP-Fe(2+) serves as a specific affinity cleavage reagent in ATP-Mg(2+) sites of Na,K-ATPase: altered ligation of Fe(2+) (Mg(2+)) ions accompanies the E(1)RE(2) conformational change, Proc Natl Acad Sci, vol.97, pp.11954-11959, 2000.

S. Hua, G. Inesi, H. Nomura, and C. Toyoshima, Fe( 2+ )-catalyzed oxidation and cleavage of sarcoplasmic reticulum ATPase reveals Mg(2+) and Mg(2+)-ATP sites, Biochemistry, vol.41, pp.11405-11410, 2002.

J. A. Cowan, Structural and catalytic chemistry of magnesium-dependent enzymes, Biometals, vol.15, pp.225-235, 2002.

J. Frausto-da-silva and R. Williams, The biological chemistry of magnesium: phosphate metabolism. The biological chemistry of the elements, pp.250-277, 1991.

D. Lüthi, D. Günzel, and J. A. Mcguigan, Mg-ATP binding: its modification by spermine, the relevance to cytosolic Mg2+ buffering, changes in the intracellular ionized Mg2+ concentration and the estimation of Mg2+ by 31P-NMR, Exp Physiol, vol.84, pp.231-252, 1999.

R. Tsivkovskii, R. G. Efremov, and S. Lutsenko, The role of the invariant His-1069 in folding and function of the Wilson's disease protein, the human coppertransporting ATPase ATP7B, J Biol Chem, vol.278, pp.13302-13308, 2003.

M. H. Sazinsky, A. Mandal, J. Argüello, and A. C. Rosenzweig, Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase, J Biol Chem, vol.281, pp.11161-11166, 2006.

C. Toyoshima, M. Nakasako, H. Nomura, and H. Ogawa, Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution, Nature, vol.405, pp.647-655, 2000.

R. Tsivkovskii, B. C. Macarthur, and S. Lutsenko, The Lys1010-Lys1325 fragment of the Wilson's disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner, J Biol Chem, vol.276, pp.2234-2242, 2001.

A. Golovin and K. Henrick, MSDmotif: exploring protein sites and motifs, BMC Bioinformatics, vol.9, p.312, 2008.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: a structural classification of proteins database for the investigation of sequences and structures, J Mol Biol, vol.247, pp.536-540, 1995.

C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, and M. B. Swindells, CATHa hierarchic classification of protein domain structures, Structure, vol.5, pp.1093-1108, 1997.

W. L. Delano, The PyMOL Molecular Graphics System DeLano Scientific, 2002.

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, pp.435-447, 2008.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, and R. K. Belew, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J Comput Chem, vol.30, pp.2785-2791, 2009.

D. A. Case, T. A. Darden, T. E. Cheatham, . Iii, C. L. Simmerling et al., , 2010.

Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, and G. Xiong, A point-charge force field for molecular mechanics simulations of proteins based on condensedphase quantum mechanical calculations, J Comput Chem, vol.24, pp.1999-2012, 2003.

M. C. Lee and Y. Duan, Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model, Proteins, vol.55, pp.620-634, 2004.

J. Wang, R. M. Wolf, J. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, J Comput Chem, vol.25, pp.1157-1174, 2004.

A. W. Available, , 2011.

K. L. Meagher, L. T. Redman, and H. A. Carlson, Development of polyphosphate parameters for use with the AMBER force field, J Comput Chem, vol.24, pp.1016-1025, 2003.

T. T. Nguyen, B. K. Mai, and M. S. Li, Study of Tamiflu Sensitivity to Variants of A/H5N1 Virus Using Different Force Fields, J Chem Inf Model, vol.51, pp.2266-2276, 2011.

A. Toukmaji, C. Sagui, J. Board, and T. Darden, Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions, J Chem Phys, vol.113, pp.10913-10927, 2000.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys, vol.126, pp.14101-14108, 2007.

H. Berendsen, J. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J Chem Phys, vol.81, pp.3684-3690, 1984.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, J Appl Crystallogr, vol.26, pp.283-291, 1993.