J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci, vol.93, pp.13770-13773, 1996.

O. K. Dudko, J. Mathé, and A. Meller, Nanopore force spectroscopy tools for analyzing single biomolecular complexes, Methods Enzymol, vol.475, issue.10, pp.75021-75028, 2010.

A. Meller, L. Nivon, E. Brandin, J. Golovchenko, and D. Branton, Rapid nanopore discrimination between single polynucleotide molecules, Proc. Natl. Acad. Sci. 97, pp.1079-1084, 2000.

G. Oukhaled, Unfolding of Proteins and Long Transient Conformations Detected by Single Nanopore Recording, Phys. Rev. Lett, vol.98, p.158101, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02006564

G. Oukhaled, L. Bacri, J. Mathé, J. Pelta, and L. Auvray, Effect of screening on the transport of polyelectrolytes through nanopores, Europhys. Lett, vol.82, p.48003, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02006554

D. Deamer, M. Akeson, and D. Branton, Three decades of nanopore sequencing, Nat. Biotechnol, vol.34, pp.518-524, 2016.

J. Mathé, H. Visram, V. Viasnoff, Y. Rabin, and A. Meller, Nanopore Unzipping of Individual DNA Hairpin Molecules, Biophys. J, vol.87, pp.3205-3212, 2004.

J. Mathé, A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller, Orientation discrimination of single-stranded DNA inside the ?-hemolysin membrane channel, Proc. Natl. Acad. Sci, vol.102, pp.12377-82, 2005.

J. Muzard, M. Martinho, J. Mathé, U. Bockelmann, and V. Viasnoff, DNA Translocation and Unzipping through a Nanopore: Some Geometrical Effects, Biophys. J, vol.98, pp.2170-2178, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677513

N. Modi, M. Winterhalter, and U. Kleinekathöfer, Computational modeling of ion transport through nanopores, Nanoscale, vol.4, pp.6166-6180, 2012.

B. Roux, T. Allen, S. Bernèche, and W. Im, Theoretical and computational models of biological ion channels, Quaterly Rev. Biophys, vol.37, pp.15-103, 2004.

S. Y. Noskov, W. Im, and B. Roux, Ion permeation through the ?-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory, Biophys. J, vol.87, pp.2299-2309, 2004.

J. Cervera, B. Schiedt, and P. Ramírez, A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores, Europhys. Lett, vol.71, pp.35-41, 2005.

D. M. Constantin and Z. S. Siwy, Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode, Phys. Rev. E, vol.76, p.41202, 2007.

I. Cozmuta, J. T. O'keeffe, D. Bose, and V. Stolc, Hybrid md-nernst planck model of ?-hemolysin conductance properties, Mol. Simul, vol.31, pp.79-93, 2005.

M. Birlea and S. I. Birlea, The current-voltage relation of a pore and its asymptotic behavior in a Nernst-Planck model, J. Electr. Bioimpedance, vol.3, pp.36-41, 2012.

P. M. De-biase, S. Markosyan, and S. Y. Noskov, Microsecond simulations of DNA and ion transport in nanopores with novel ion-ion and ion-nucleotides effective potentials, J. Comput. Chem, vol.35, pp.711-721, 2014.

P. M. De-biase, What controls open-pore and residual currents in the first sensing zone of ?-hemolysin nanopore? Combined experimental and theoretical study, Nanoscale, vol.8, pp.11571-11579, 2016.

C. Millar, Brownian simulation of charge transport in ?-haemolysin, J. Comput. Electron, vol.7, pp.28-33, 2008.

A. Aksimentiev, J. B. Heng, G. Timp, and K. Schulten, Microscopic Kinetics of DNA Translocation through synthetic nanopores, Biophys. J, vol.87, pp.2086-2097, 2004.

A. Aksimentiev and K. Schulten, Imaging ?-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map, Biophys. J, vol.88, pp.3745-3761, 2005.

D. Marino, D. Bonome, E. L. Tramontano, A. Chinappi, and M. , All-Atom Molecular Dynamics Simulation of Protein Translocation through an ?-Hemolysin Nanopore, J. Phys. Chem. Lett, vol.6, pp.2963-2668, 2015.

S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De-vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B, vol.111, pp.7812-7824, 2007.

H. I. Ingólfsson, Lipid organization of the plasma membrane, J. Am. Chem. Soc, vol.136, pp.14554-14559, 2014.

M. Pinot, Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins, Science, vol.345, pp.693-697, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01141794

F. J. Van-eerden, D. H. De-jong, A. H. De-vries, T. A. Wassenaar, and S. J. Marrink, Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations, BBA-Biomembranes, vol.1848, pp.1319-1330, 2015.

T. Ha-duong, N. Basdevant, and D. Borgis, A polarizable coarse-grained water model for coarse-grained proteins simulations, Chem. Phys. Lett, vol.468, pp.79-82, 2009.

Z. Wu, Q. Cui, and A. Yethiraj, A new coarse-grained model for water: the importance of electrostatic interactions, J. Phys. Chem. B, vol.114, pp.10524-10529, 2010.

S. O. Yesylevskyy, L. V. Schäfer, D. Sengupta, and S. J. Marrink, Polarizable water model for the coarse-grained MARTINI force field, PLoS Comput. Biol, vol.6, 2010.

D. Van-der-spoel, GROMACS: Fast, flexible, and free, J. Comp. Chem, vol.26, pp.1701-1718, 2005.

L. Monticelli, The martini coarse-grained force field: Extension to proteins, J. Chem. Theory Comput, vol.4, pp.819-834, 2008.

D. H. De-jong, Improved parameters for the martini coarse-grained protein force field, J. Chem. Theory Comput, vol.9, pp.687-697, 2013.

S. J. Marrink, A. H. De-vries, and A. E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B, vol.108, pp.750-760, 2004.

S. Pezeshki, C. Chimerel, A. N. Bessonov, M. Winterhalter, and U. Kleinekathöfer, Understanding ion conductance on a molecular level: an all-atom modeling of the bacterial porin OmpF, Biophys. J, vol.97, pp.1898-1906, 2009.

J. Lu, N. Modi, and U. Kleinekathöfer, Simulation of ion transport through an N-acetylneuraminic acid-inducible membrane channel: from understanding to engineering, J. Phys. Chem. B, vol.117, pp.15966-15975, 2013.

S. Bhattacharya, Rectification of the current in ?-hemolysin pore depends on the cation type: the alkali series probed by MD simulations and experiments, J. Phys. Chem. C, vol.115, pp.4255-4264, 2011.

M. Vögele, C. Holm, and J. Smiatek, Properties of the polarizable MARTINI water model: A comparative study for aqueous electrolyte solutions, J. Mol. Liq, vol.212, pp.103-110, 2015.

B. Roux, The membrane potential and its representation by a constant electric field in computer simulations, Biophys. J, vol.95, pp.4205-4216, 2008.

R. A. Böckmann, B. L. De-groot, S. Kakorin, E. Neumann, and H. Grubmüller, Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations, Biophys. J, vol.95, pp.1837-1850, 2008.

J. Gumbart, F. Khalili-araghi, M. Sotomayor, and B. Roux, Constant electric field simulations of the membrane potential illustrated with simple systems, Biochim. Biophys. Acta, vol.1818, pp.294-302, 2012.

J. R. Rodriguez and A. E. García, Concentration dependence of NaCl ion distributions around DPPC lipid bilayers, Interdiscip. Sci, vol.3, pp.272-282, 2011.

R. A. Böckmann, A. Hac, T. Heimburg, and H. Grubmüller, Effect of sodium chloride on a lipid bilayer, Biophys. J, vol.85, pp.74594-74603, 2003.

S. Lee, Y. Song, and N. A. Baker, Molecular dynamics simulations of asymmetric NaCl and KCl solutions separated by phosphatidylcholine bilayers: Potential drops and structural changes induced by strong Na+-lipid interactions and finite size effects, Biophys. J, vol.94, pp.3565-3676, 2008.

L. Song, Structure of staphylococcal ?-hemolysin, a heptameric transmembrane pore, Science, vol.274, pp.1859-1865, 1996.

K. A. Scott, Coarse-grained MD simulations of membrane protein-bilayer self-assembly, Structure, vol.16, pp.621-630, 2008.

N. B. Guros, A. Balijepalli, and J. B. Klauda, The role of lipid interactions in simulations of the ?-hemolysin ion-channelforming toxin, Biophys. J, vol.115, pp.1720-1730, 2018.

R. Desikan, S. M. Patra, K. Sarthak, P. K. Maiti, and K. G. Ayappa, Comparison of coarse-grained (MARTINI) and atomistic molecular dynamics simulations of ? and ? toxin nanopores in lipid membranes, J. Chem. Sci, vol.129, pp.1017-1030, 2017.

X. Periole, M. Cavalli, S. Marrink, and M. A. Ceruso, Combining an elastic network with a coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition, J. Chem. Theory Comput, vol.5, pp.2531-2543, 2009.

M. Tagliazucchi and I. Szleifer, Transport mechanisms in nanopores and nanochannels: can we mimic nature?, Mater. Today, vol.18, pp.131-142, 2015.

L. Van-oeffelen, Ion current rectification, limiting and overlimiting conductances in nanopores, PLoS One, vol.10, 2015.

Y. Liu and F. Zhu, Collective diffusion model for ion conduction through microscopic channels, Biophys. J, vol.104, pp.368-376, 2013.

I. Cozmuta, J. O'keeffe, and V. Stolc, Towards an MD simulation of ion currents in the ?-hemolysin channel, Third IEEE Conference on Nanotechnology, vol.1, pp.187-190, 2003.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys, vol.81, pp.511-519, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, vol.31, pp.1695-1697, 1985.

. Martini and . Field, , 2019.

. Memprotmd, , 2019.