Skip to Main content Skip to Navigation
Journal articles

Numerical Analysis of the Microstructure-based Model for Layered Composites via MC and FEM Approaches

Abstract : A numerical approach combining the Monte Carlo (MC) and the finite element method (FEM) is developed and applied to investigate the mechanical performance of layered composites. We consider a simplified two-dimensional layered composite model and mainly focus on the stress response with the effects of the grain orientation, grain boundary properties, and the laminated topological structure.The stress distribution in the materials is heterogeneous in each individual layer because of grain orientation. The stress level in the hard layers is higher than that in the soft layers from the point of view of global stress distribution. The average stress changes with the inner layer thickness and the number of layers. The average stress increases almost linearly with the modulus ratio for the homogeneous materials, whereas it is nonlinear for the heterogeneous polycrystalline layered materials.
Document type :
Journal articles
Complete list of metadata

https://hal-univ-evry.archives-ouvertes.fr/hal-02398145
Contributor : Univ Évry Hal <>
Submitted on : Friday, June 4, 2021 - 4:23:15 PM
Last modification on : Wednesday, June 9, 2021 - 3:36:24 AM

File

liu2015.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Y.F. Liu, Q.F. Zeng, Z.Q. Feng, L.F. Cheng, L.J. Li, et al.. Numerical Analysis of the Microstructure-based Model for Layered Composites via MC and FEM Approaches. Brazilian Journal of Physics, 2015, 11, ⟨10.1007/s13538-015-0379-y⟩. ⟨hal-02398145⟩

Share

Metrics

Record views

46

Files downloads

4