Secondary Injectant Gas Thermodynamic Properties Effects on Fluidic Thrust Vectoring Performances of a Supersonic Nozzle - Université d'Évry Access content directly
Proceedings 30th International Symposium on Shock Waves Year : 2017

Secondary Injectant Gas Thermodynamic Properties Effects on Fluidic Thrust Vectoring Performances of a Supersonic Nozzle

Abstract

The transverse injection in a supersonic cross-flow is problematic which can be encountered in several aerodynamic applications such as fuel injection in scramjet combustor, missile control, drag reduction, and thrust vector control. In recent years, an extended analytical, numerical, and experimental work has been carried out by the authors to investigate the vectoring performances of a supersonic axisymmetric nozzle using secondary fluid injection. Secondary gas injection thrust vector control (SITVC) orshock vector control (SVC) is considered as an alternative way to control the thrust direction of a rocket nozzle beside the classical use of mechanical device such as fluidic actuators. In the context of SITVC operation, the nature and source of injectant gas may raise efficiency-related issues. In previous studies, it is well established that injection of gas with low molar mass promotes better jet penetration and therefore will be a better choice for SITVCoperation. To assess this point, an experimental test campaign has been conducted in the hypersonic test facility EDITH of the CNRS institute ICARE in Orléans, France.The focus of the study is to analyze the secondary injectantgas thermodynamic properties influence on the global vec-toring performance of a supersonic nozzle. For this purpose,performance aspects of fluidic thrust vectoring concept have been experimentally investigated on a truncated ideal contour (TIC) nozzle model using a variety of gas species(with low to moderate molar mass) as injectant. Qualitativeand quantitative diagnostics consisted of Z-Schlieren visualization, 3-axis force balance, and static and dynamic parietal pressure measurements. The experimental results are compared to the numerical and analytical findings.
Fichier principal
Vignette du fichier
chpoun2017.pdf (279.73 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02398154 , version 1 (04-06-2021)

Licence

Attribution

Identifiers

Cite

A. Chpoun, M. Sellam, V. Zmijanovic, L. Léger. Secondary Injectant Gas Thermodynamic Properties Effects on Fluidic Thrust Vectoring Performances of a Supersonic Nozzle. 30th International Symposium on Shock Waves, 1, Springer; Springer International Publishing, pp.539-543, 2017, ⟨10.1007/978-3-319-46213-4_92⟩. ⟨hal-02398154⟩
77 View
122 Download

Altmetric

Share

Gmail Facebook X LinkedIn More