R. Akbani, S. Kwek, and N. Japkowicz, Applying support vector machines to imbalanced datasets, Proc. ECML, pp.39-50, 2004.

S. Akcay, A. A. Abarghouei, and T. P. Breckon, Ganomaly : Semi-supervised anomaly detection via adversarial training, 2018.

R. Chalapathy and S. Chawla, Deep learning for anomaly detection : A survey, 2019.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection : A survey, ACM Comput. Surv, vol.41, issue.3, 2009.

A. Creswell and A. A. Bharath, Inverting the generator of A generative adversarial network

. Corr, , 2018.

L. Deecke, R. A. Vandermeulen, L. Ruff, S. Mandt, and M. Kloft, Image anomaly detection with generative adversarial networks, Proc. ECML 2018, pp.3-17, 2018.

L. Dhanabal and S. Shantharajah, A study on NSL-KDD dataset for intrusion detection system based on classification algorithms, 2015.

I. Golan and R. El-yaniv, Deep anomaly detection using geometric transformations, Proc. NIPS 2018, pp.9781-9791, 2018.

B. R. Kiran, D. M. Thomas, and R. Parakkal, An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos, J. Imaging, vol.4, issue.2, p.36, 2018.

Y. Lecun, The MNIST database of handwritten digits, 1998.

C. Li, H. Liu, C. Chen, Y. Pu, L. Chen et al., ALICE : towards understanding adversarial learning for joint distribution matching, Proc. NIPS 2017, pp.5501-5509, 2017.

M. Lichman, UCI machine learning repository, 2013.

M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, Adversarially learned one-class classifier for novelty detection, Proc. CVPR 2018, pp.3379-3388, 2018.

T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-erfurth, and G. Langs, Unsupervised anomaly detection with generative adversarial networks to guide marker discovery, 2017.

B. Schölkopf, R. Williamson, A. Smola, J. Shawe-taylor, and J. Platt, Support vector method for novelty detection, Advances in neural information processing systems, vol.12, issue.3, pp.582-588, 2000.

K. Veropoulos, C. Campbell, and N. Cristianini, Controlling the sensitivity of support vector machines, Proc. IJCAI, 1999.

G. Wu and E. Y. Chang, Adaptive featurespace conformal transformation for imbalanceddata learning, Proc. ICML 2003, pp.816-823, 2003.

Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun, Learning discriminative reconstructions for unsupervised outlier removal, Proc. 2015 IEEE International Conference on Computer Vision (ICCV'15), pp.1511-1519, 2015.

H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu et al., Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications, 2018.

H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, Efficient GAN-based anomaly detection, 2018.

H. Zenati, M. Romain, C. Foo, B. Lecouat, and V. Chandrasekhar, Adversarially learned anomaly detection, Proc. ICDM 2018, pp.727-736, 2018.