B. Kaur, F. W. Khwaja, E. A. Severson, S. L. Matheny, D. J. Brat et al., Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis, Neuro Oncol, vol.7, pp.134-53, 2005.

T. Mesti and J. Ocvirk, Malignant gliomas: old and new systemic treatment approaches, Radiol Oncol, vol.50, pp.129-167, 2016.

H. Yang, D. Ye, K. L. Guan, and Y. Xiong, IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives, Clin Cancer Res, vol.18, pp.5562-71, 2012.

J. A. Losman, W. G. Kaelin, and J. , What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer, Genes Dev, vol.27, pp.836-52, 2013.

L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, pp.739-783, 2009.

M. E. Figueroa, O. Abdel-wahab, C. Lu, P. S. Ward, J. Patel et al., Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation, Cancer Cell, vol.18, pp.553-67, 2010.

I. F. Duarte, J. Marques, A. F. Ladeirinha, C. Rocha, I. Lamego et al., Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy, Anal Chem, vol.81, pp.5023-5055, 2009.

M. Cuperlovic-culf, D. A. Barnett, A. S. Culf, and I. Chute, Cell culture metabolomics: applications and future directions, Drug Discov Today, vol.15, pp.610-631, 2010.

S. Dietmair, N. E. Timmins, P. P. Gray, L. K. Nielsen, and J. O. Kromer, Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol, Anal Biochem, vol.404, pp.155-64, 2010.

J. Kronthaler, G. Gstraunthaler, and C. Heel, Optimizing high-throughput metabolomic biomarker screening: a study of quenching solutions to freeze intracellular metabolism in CHO cells, Omics, vol.16, pp.90-97, 2012.

M. N. Triba, A. Starzec, N. Bouchemal, E. Guenin, G. Y. Perret et al., Metabolomic profiling with NMR discriminates between biphosphonate and doxorubicin effects on B16 melanoma cells, NMR Biomed, vol.23, pp.1009-1025, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00609861

T. Mesti, P. Savarin, M. N. Triba, L. Moyec, L. Ocvirk et al., Metabolic impact of anti-angiogenic agents on U87 glioma cells, PLoS One, vol.9, p.99198, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02489933

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J Immunol Methods, vol.65, pp.55-63, 1983.

F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J Biomol NMR, vol.6, pp.277-93, 1995.

J. Trygg and S. Wold, Orthogonal projections to latent structures (O-PLS), Journal of Chemometrics, vol.16, pp.119-147, 2002.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation, Science, vol.324, pp.1029-1062, 2009.

M. M. Billah, J. C. Anthes, A. Horska, and P. B. Barker, The regulation and cellular functions of phosphatidylcholine hydrolysis, Neuroimaging Clin N Am, vol.269, pp.293-310, 1990.

L. L. Cheng, D. C. Anthony, A. R. Comite, P. M. Black, A. A. Tzika et al., Quantification of microheterogeneity in glioblastoma multiforme with ex vivo high-resolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopy, Neuro Oncol, vol.2, pp.87-95, 2010.

L. Maurmann, L. Belkacemi, N. R. Adams, P. M. Majmudar, S. Moghaddas et al., A novel cisplatin mediated apoptosis pathway is associated with acid sphingomyelinase and FAS proapoptotic protein activation in ovarian cancer, Apoptosis, vol.20, pp.960-74, 2015.

E. J. Delikatny, W. A. Cooper, S. Brammah, N. Sathasivam, and D. C. Rideout, Nuclear magnetic resonance-visible lipids induced by cationic lipophilic chemotherapeutic agents are accompanied by increased lipid droplet formation and damaged mitochondria, Cancer Res, vol.62, pp.1394-400, 2002.

F. G. Blankenberg, R. W. Storrs, L. Naumovski, T. Goralski, and D. Spielman, Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy, Blood, vol.87, pp.1951-1957, 1996.

F. G. Blankenberg, P. D. Katsikis, R. W. Storrs, C. Beaulieu, D. Spielman et al., Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy, Blood, vol.89, pp.3778-86, 1997.

N. M. Al-saffar, J. C. Titley, D. Robertson, P. A. Clarke, L. E. Jackson et al., Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells, Br J Cancer, vol.86, pp.963-70, 2002.

J. L. Griffin, K. K. Lehtimäki, P. K. Valonen, O. H. Gröhn, M. I. Kettunen et al., Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death, Cancer Res, vol.63, pp.3195-201, 2003.

K. S. Opstad, B. A. Bell, J. R. Griffiths, and F. A. Howe, Taurine: a potential marker of apoptosis in gliomas, Briti J Cancer, vol.100, pp.789-94, 2009.

R. D. Tien, P. H. Lai, J. S. Smith, and F. Lazeyras, Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors, AJR Am J Roentgenol, vol.167, pp.201-210, 1996.

M. E. Kolpakova, O. S. Veselkina, and T. D. Vlasov, Creatine in cell metabolism and its protective action in cerebral ischemia, Neurosci Behav Physiol, vol.45, pp.476-82, 2015.

J. L. Izquierdo-garcia, P. Viswanath, P. Eriksson, M. M. Chaumeil, R. O. Pieper et al., Metabolic reprogramming in mutant IDH1 glioma cells, PLoS One, vol.10, p.118781, 2015.

Z. J. Reitman, J. G. Karoly, E. D. Spasojevic, I. Yang, J. Kinzler et al., Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome, Proc Natl Acad Sci, vol.108, pp.3270-3275, 2011.

C. V. Dang, Rethinking the Warburg effect with Myc micromanaging glutamine metabolism, Cancer Res, vol.70, pp.859-62, 2010.

A. Halama, G. Moller, and J. Adamski, Metabolic signatures in apoptotic human cancer cell lines, Omics, vol.15, pp.325-360, 2011.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang et al., Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect, J Biol Chem, vol.286, pp.42626-42660, 2011.

L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, pp.739-783, 2009.

R. J. Deberardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff et al., Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc Natl Acad Sci, vol.104, pp.19345-50, 2007.

C. M. Metallo, J. L. Walther, and G. Stephanopoulos, Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells, J Biotechnol, vol.144, pp.167-74, 2009.

P. S. Ward, J. Patel, D. R. Wise, A. , O. Bennett et al., The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate, Cancer Cell, vol.17, pp.225-259, 2010.