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Abstract—Few-shot segmentation presents a signi cant chal-
lenge for semantic scene understanding under limited supervi- Support Set Query Set
sion. Namely, this task targets at generalizing the segmentation
ability of the model to new categories given a few samples.
In order to obtain complete scene information, we extend the

RGB-centric methods to take advantage of complementary depth
information. In this paper, we propose a two-stream deep neural R

network based on metric learning. Our method, known as RDNet,
learns class-speci ¢ prototype representations within RGB and
depth embedding spaces, respectively. The learned prototypes
provide effective semantic guidance on the corresponding RGB
and depth query image, leading to more accurate performance.
Moreover, we build a novel outdoor scene dataset, known as
Cityscapes3', using labeled RGB images and depth images
from the Cityscapes dataset. We also perform ablation studies
to explore the effective use of depth information in few-shot
segmentation tasks. Experiments on Cityscapes- show that our
method achieves excellent results with visual and complementary
geometric cues from only a few labeled examples.

Prediction

I. INTRODUCTION

With the advent of multiple sensory modalities, multimodal
data has attracted much attention in the computer visighy. 1: Overview of the proposed RDNet approach. R and
domain. As one of the most commonly-used modalities, depth-indicate the RGB and depth image input, respectively. The
sensing cameras provide rich geometric information of thgstract features of labeled support images are mapped into the
scenes. Several deep neural networks exploit these depth mafgesponding embedding space (circles). Multiple prototypes
as an addition image channel [1, 2] or point cloud in 3blue and yellow solid circles) are generated to perform seman-
space [3, 4]. Arguably, the integration of additional depttic guidance (dashed lines) on the corresponding query features
features in semantic image segmentation leads to signi caombus). RDNet further produces the nal prediction by
performance improvement. Different from fully supervisedombining the probability maps from RGB and depth stream.
semantic segmentation, few-shot segmentation concentrates on
the generalization of segmentation ability to unseen categories
given only a few samples. To be specic, some existing fewhe corresponding embedding space. These prototype repre-
shot segmentation methods learn the representative featiw@stations learned from RGB and depth inputs provide further
for each target class in the support images, then guide #gimilarity guidance on the query feature. Then our RDNet
pixel-level prediction on the query image. However, the gefuses multiple probability maps generated by the two streams
eralization and discrimination abilities of these methods stilito a joint prediction. In this way, our method outperforms
remain to be improved, especially for complex scenes. the baseline networks with higher accuracy.

For the above reasons, we take inspiration from existing Furthermore, we report the experimental results on a
RGB-centric methods for few-shot semantic segmentation anew benchmark dataset, Cityscaf@s-Different from the
propose a two-stream deep neural network based on mefraguently-used PASCAIS dataset for object segmentation,
learning, called RDNet. The original intention of our work iCityscapes3 is derived from the large-scale Cityscapes
to incorporate supplementary depth information into a fewdataset, which consists of diverse urban street scenes at
shot segmentation model. As shown in Figure 1, the proposeatying times. Complex category information greatly increases
RDNet employs both RGB and depth images of the sarttee dif culty of scene understanding, especially with limited
scene in the support and query set. The abstract foregrowgervisory samples. To tackle this challenge, we conduct
and background features of target classes are embedded waidous comparative experiments to exploit the potential of



depth information and effective fusion pattern. To the best b) Few-shot SegmentationMany approaches for few-

of our knowledge, we are the rst to facilitate the few-shot learning are proposed to generalize prior knowledge to
shot segmentation problem with additional depth cues. Thisw tasks using only a few examples. Some research [13, 14]
work also promotes the use of multimodal data in the fevintroduced the metric learning-based matching network for
shot learning eld. To sum up, the main contributions arthe few-shot classi cation task. The non-parametric structure
summarized as follows: facilitates the generalization of models to new training sets.

We propose a metric learning-based deep neural netw&ﬂe” et al. [15] presented a method to represent the prototypes

for few-shot semantic segmentation, which process@gr class in a representation space, known as Prototypical
RGB-D data in two streams Networks. Moreover, several studies such as [16] have focused

We de ne a new few-shot segmentation benchmark ¢! the graph-based methods for few-shot learning.
the Cityscapes dataset, named Cityscades- Furthermore, few-shot semantic segmentation refers to the

Extensive experiments and ablation studies demonstr@{g€l-level prediction of new categories on the query set, given
the effectiveness of the proposed RDNet, as well Quly a few labeled support images. For example, Shaban et al.

the positive effects of geometric information in Iimiteo{ﬂ] rst presents a dual branch parallel network for one-shot
supervisory scene understanding. segmentation, known as OSLSM, including a conditioning

) ) _ ) ‘branch and a segmentation branch. The conditioning branch
The remainder of this paper is organized as follows. Secti@gyacts representative high-level features from the supporting
Il reviews the related work in fully-supervised RGB-D semanmage-label pair, whilst the segmentation branch integrates the
tic segmentation and state of the art for few-shot segmentatigarameters learned from the conditioning branch and performs
Section Ill describes the proposed two-stream arChiteC“Hesegmentation mask on the query image. Other variants of
in detail. Section IV presents a new few-shot segmentatigils| S\ include Co-FCN [18], PL+SEG [19] and MDL [20].
benchmark called Cityscap@s- Section V reports the ex- o|| of which extend such dual branch structure to achieve
tensive experimental results as well as the ablation studigse,pstantial performance improvement. In the AMP model,

Conclusions are drawn in Section VI. Siam et al. [21] replaces the guidance branch with a multi-
resolution weight. Moreover, SG-One [22] proposed a Masked
Il. RELATED WORK Average Pooling block (MAP) to extract the representative

vectors of support objects. Then the segmentation mask was
a) RGB-D Semantic SegmentatioRecent advances in predicted via a similarity guidance network. More recently,
deep learning enable the fully-supervised semantic segmgvang et al. [23] presents a novel prototype alignment network,
tation on 2D images to achieve a signicant performancealled PANet, based on non-parametric metric learning.
enhancement [5, 6, 7]. With the advent of various depth
sensors, a growing number of approaches have been proposed Ill. METHODOLOGY
which use depth cues for complex scene understanding. Ao Problem setting

name a few, Qi et al. [8] proposed a 3D graph neural netWorkFeW—shot semantic segmentation involves three datasets: a

tha_lt builds a k.—nearest neighbor graph on top of the 3Paining seDyan , a support sebs, and a query sed. The
pomt CIC.)Ud' This method er'nploys.both the 2D appear"’mgggmentation model is trained 8, , and evaluated obB ¢
information and 3D geometric relations to produce excelle thq. Moreover, we adopt the training and testing protocols
results on RGB-D segmentation benchmarks. In [3, 4], a Serfi917]. Suppose the set of semantic classeB igin iS Cseen-

of PointNet was proposed to take point clouds as input a assume that the set of classes at test tBageen , does
output point clouds directly. These architectures can effectiv t overlap withC ie Con\C = :. We formally
seen I-%“ - ~seen unseen — -

qurn representative features from informative points of tI}]ee ne these datasets in the following lines:
point cloud. b = (xRoxP v h R lor |
Otherwise, some works [1, 2, 9, 10, 11] attempt to tackle ~~an = (x5 ¥(1)i)i=, , wherex(® s a color image,
RGB-D semantic segmentation tasks by processing geomet- X lsa depth image of th_e same sceyg); denotes the
ric information as a supplementary image or an additional correspoqdmg segmentation mask (.)f Clags2 Cseen),
channel. Namely, multimodal image input was fed into an andN |nglce|13tes the ,\';,]umber of tLalnlng %xamples.
elaborated neural network for a joint prediction. As an al- Ps = (X7 y(D););, . wherexj andx}” denote the
ternative method, RGB and depth images can be separately corresponding RGB and depth imaggl); is 'Fhe.mask
trained in a two-branch network. Moreover, Gupta et al. [12]  for the semantic class(l 2 Cunseen ), andM indicates
presented a geocentric embedding algorithm to generate three the number of labeled samples given in the test phase.
channels HHA images, which contain horizontal disparity, Da = (X[:x} j=1 Is the query set of pairs of RGB
surface normal, and height above ground. In our work, we and depth images. Evaluations &y show the relative
process depth information by combining a complementary Performance of the models.
depth stream with the RGB one. Then our model maps theTherefore the goal of few-shot segmentation is to train a
support depth data into a depth embedding space, whitiodelf with high discriminative power and generalizability
provides further semantic guidance on the query image. from Dy, , then produces a segmentation predictionDon
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Fig. 2: Details of the proposed RDNet architecture. It includes two mirrored streams: an RGB stream and a depth stream. Eac
stream processes the corresponding input data, including a support set and a query set. The prototypes of support images
obtained by masked average pooling. Then the semantic guidance is performed on the query feature by computing the relati
cosine distance. The results from these two streams are combined at the late stage.

given a support sdDs. Usually, if the the support set consistsetwork. For ef cient implementation, we adopt a VGG-16 as
of K labeled samples for each of C semantic classes, we backbone network following the setup in [23]. In this way,
consider such few-shot learning problem @sway K -shot we can map RGB and depth data into different embedding

segmentation task. spaces.
Prototype learning for RGB-D data Snell et al. [15] pro-
B. Proposed model posed a prototypical network that learns a common metric

space. Few-shot classi cation can be achieved by computing
shot segmentation task by incorporating complementary defifffa'ces to prototype representations of each class. We em-
oy the Masked Average Pooling [22] to build pre-class proto-

information. Existing supervised semantic segmentation X )
proaches for RGB-D data do not offer a satisfactory soluti pes from both foreground and background information of the
R

to learn new categories rapidly from limited data. For this reSUPPOIt images. Given a support & = (x7*;x;y(l); )J'le

son, we employ ideas from previous work of non-parametr{gee Section I1I-A), lef (1)P be the output feature maps of the
metric learning and propose a two-stream deep neural netwaée network with support RGB or depth input. THe(l);
(RDNet) The main nove|ty of this Study is to Separate|96n0tes the resized feature maps, which have the same width
learn the RGB and depth prototype representations in differéitand heighth as the semantic mask(l); 2 f 0;1g" *.
embedding spaces. The learned prototypes are applied to the prototype of target cladscan then de ned via Masked
corresponding query features as semantic guidance. ThenAvgrage Pooling by the following equation:

The main motivation of our work is to facilitate the few-

integrate the results from these two streams for an improved X P (wh) E YWy =

_ 1 w=g:h=o F (1) [y(); ]
segmentation performance. Pe= o P Wi 1)
RGB-D input As shown in Figure 2, the proposed RDNet J w=on=0 1Y(777 =11

consists of two mirrored prototypical networks, which procesghere 1( ) is the indicator function that equals to 1 if the
RGB and depth input separately. Note that the support aatgument is true or O otherwise. Similarly, the prototypes for
query set through the depth stream provide the same scéme background can be computed wit[y(l)j(‘”;h) 61]. Itis
information as the RGB Stream. Then the support imagastable that both foreground and background information of
are embedded into high-level abstract features via a bd&€&D and depth images should be considered in this work.
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Fig. 3: Visualization using t-SNE [24] for RGB and depth prototype representations in our RDNet.

These representative prototypes are the premise of reliabfdBLE I: Training and evaluation on Cityscap@s-dataset
semantic guidance. To take an example, Figure 3 shows Hfind 3-fold cross-validation, wheiiedenotes the number of

visualization of RGB and depth prototype representations SfPSets:

our experiments. Dataset Test classes

Similarity guidance and feature fusion We compare the C?tyscapess‘l) road, sidewalk, bus

abstract query feature with expressive prototypes using dis- Cityscapes3 | vegetation, terrain, sky
Cityscapes3” | human, car, building

tance metric learning method. To be specic, we map the

query feature vector into the corresponding embedding space.
The computed cosine distance indicates the similarity g{
target class. Besides, according to the previous work in fully-
supervised semantic segmentation with RGB-D data [1, 1
there are two main fusion stategies, i.e., early fusion a

reet scenes. Images provide a broader perspective from the
ound to the sky, involving a variety of categories. Then,
nd’pst of the categories in the image have irregular shapes and

. ._lack distinct boundaries. Objects may overlap and be arranged
late fusion [25, 26]. In our work, we employ the late fusion domly. Therefore it is a dif cult task for segmentation

- a
strategy, and concatenate all the p_rc_)bablhty_ maps genera?ﬁgdels to learn characteristic features from only a few labeled
from RGB and depth steams for a joint prediction. .

samples and generalize to unseen classes.

We adopt all the RGB-D image pairs as well as the corre-
sponding segmentation masks from Cityscapes training set for

To fully exploit few-shot semantic segmentation with adtraining, referred to a®yqain - The test seDyg is formed
ditional depth information, we create a new dataset, namby including all the samples in Cityscapes validation set. Then
Cityscapes3 . We adopt the annotated RGB images and thee choose 9 typical categories out of 30 as our target classes,
depth images of the same scene from the Cityscapes datasettainingroad, sidewalk bus vegetationterrain, sky, human
[27]. Cityscapes is a popular benchmark dataset for semarntar, building. Following the setup of few-shot segmentation
understanding of outdoor scenes, which consists of thousaddsaset PASCAIS [17], we sample 3 classes out of all 9
of precise depth images and pixel-wise semantic segmentaticategories as test label-daty; = f3i+1;3i+2;3i+3gwhere
Compared with object segmentation datasets such as PASGAL [1; 3] denotes the number of subsets, and the remaining 6
VOC [28] and COCO [29], it is more challenging to predictlasses form the train label-skt,in (see Table 1). Namely,
a pixel-wise mask for semantic classes in the image bfan \ Lwst = ;. The images iDy4n andDiegt contain
Cityscapes. First, Cityscapes contains more complex urbainleast one pixel in the semantic mask from the label-set

IV. DATASET



TABLE |I: Results of 1-way 1-shot and 1-way 2-shot semantic segmentation on CitysSapsisg mean-loU(%) metric.

Methods Modality 1-way 1-shot 1-way 2-shot
Cityscapes8 [ Cityscapes3' | Cityscapes3* [ Mean | Cityscapes3” | Cityscapes3" | Cityscapes3* | Mean
PANet RGB 35.2 19.7 32.1 29.0 37.2 23.2 36.7 324
RDNet-R 35.7 22.3 32.6 30.2 36.7 24.1 37.5 32.8
PANet Depth 32.6 14.5 19.3 22.1 34.2 15.8 22.5 24.2
RDNet-D 35.1 15.8 21.0 24.0 33.7 17.3 25.3 25.4
RDNet-concat| RGB-D 33.8 15.7 20.7 23.4 34.3 17.9 26.9 26.4
RDNet (ours) 36.8 235 33.3 31.2 37.3 26.1 37.6 33.7

TABLE III: Per-class mean-loU(%) comparison of ablation|ass and averages the loU of both foreground and background.
studies for 1-way 1-shot semantic segmentation Based on these two metrics, we can fairly compare the

Class | RDNet | RDNet-R | RDNet-D accuracy and ef ciency of baselines in terms of 1-way N-shot
Mean 31.2 30.2 24.0 semantic segmentation.
Sigs&glk ‘i?:g El‘g:‘; 513‘5‘:‘7‘ c) Baselines:First we employ PANet [23] as the uni-
Bus 9.5 10.6 5.3 modal baseline model. Arguably, this baseline network shows
Vegetation |  43.1 40.2 26.9 signi cant performances on PASCAE- dataset. We report
T?Srg'“ 189-31 ig'% 163;87 its evaluations on both RGB and depth data. Moreover, we
Human 478 46.6 36.9 present the performance of RGB stream and depth stream
Car 12.1 12.1 5.0 of our model separately, performing a series of ablation
Building | 39.9 39.2 211 studies. Furthermore, we set a multimodal baseline with simple

TABLE IV: Results of 1-way 1l-shot semantic segmentatioﬁoncaten?t'ont’ r?;ersgB'to adeDmgt-conca:. T t:]us balselltnteh,
using binary loU and the runtime. we concatenate the and depth images to 4 channels at the

early stage. An extra fusion layeB ( 3 convolutional lters

MPEA{"IIO?S Mg‘é"g‘y bi”g;yo'ou R;J?“me and ReLU activation) was added to adapt the concatenated
(S) . ms . . .

RDNet-R 56.5 65ms inputs, while the rest of the network is exactly the same as
RDNet-concat| RGB-D 51.9 67ms the RGB branch in our model.

RDNet (ours) 57.9 135ms

B. Experimental results

In Table II, we illustrate the performance of our proposed

Lwain andLies; , respectively. Moreover, we reset the pixelRDNet and other baseline methods on Citysca@esicluding
in segmentation masks that not belong to the correspondibgvay 1-shot and 1-way 2-shot semantic segmentation. First,
label-sets as the background. In our experiments, we train agéd observe that using RGB data provides better segmentation
evaluate the proposed model on 3 folders in a cross-validati@gsults than using depth data as input. Moreover, one can
manner. For each folder, we take a random 500 samples aitsb notice that a simple concatenation of RGB and depth
average the results from 5 runs to evaluate the performanceeitures, RDNet-concat, does not provide satisfactory results.
the models. Indeed, RDNet-concat achieves a mloU score of 26.4%, which
is higher than the score obtained with RDNet-D (25.4%) but
much lower than the score obtained by RDNet-R (32.8%)
A. Setup for 1-way 2-shot semantic segmentation. Our method, RD-

a) Implementation detailsWe conduct the experimentsNet, outperforms other unimodal networks and concatenated
with implementations in PyTorch [30]. The backbone networkpproach overall. RDNet achieves a mloU score of 31.2% for
(i.e., VGG-16) was initialized with pre-trained weights orl-way 1-shot and 33.7% for 1-way 2-shot, which represents
ImageNet [31]. We resized the input images #68 384 an increase of +7% compared to RDNet-concat.
and trained on a single Nvidia TITAN Xp GPU with 12GB We further conduct ablation studies to investigate the va-
memory. All the few-shot segmentation models were traindidity of RDNet. The results are shown in Table IlIl. We
using stochastic gradient descent (SGD) with a batch sizeaain observe a satisfactory performance enhancement of our
1, a momentum of 0.9, and weight decay of 0.0005 for raethod for most of the classes. In particular, thegetation
maximum of 30,000 iterations. The initial learning rate wasidewalkandskyclasses. These experimental results illustrate
set to 0.0001 and reduced by 0.1 every 10,000 iterations. the effectiveness of our method and the potential of depth

b) Evaluation metrics:Following the previous works on information in scene understanding with limited supervision.
few-shot segmentation [17][22][23], we apply two standard Compared with RDNet-concat, our proposed method pro-
metrics to evaluate the performance of learning models: meamdes an improvement of +7.8% and +7.3% in terms of mloU
loU and binary-loU. Generally, the mean Intersection-oveand binary loU for 1-way 1-shot segmentation (see Table
Union (mean-loV) is used to measure the accuracy of ealdf). The results also show that simple concatenation has
foreground class and average over all the classes. Binary-lot) signi cant improvement in the segmenatation prediction.
deals uniformly with all object categories as one foregrouriBesides, Figure 4 shows the qualitative results of our method,

V. EXPERIMENTS
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Fig. 4: Qualitative results of our method for 1-way 1-shot semantic segmentation on City8tapes-

including multimodal input and the segmentation predictionvork will focus on the impact of multimodal data in few-

Our model yields promising segmentation results in 1-shshot learning tasks and how to fuse these data for optimal

settings. However, it is still challenging to distinguish th@erformance.

irregular objects and categories with similar characteristics in
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