P. Flandrin, Time-Frequency/Time-Scale analysis, 1998.

K. Kodera, R. Gendrin, and C. De-villedary, Analysis of time-varying signals with small BT values, IEEE Trans. Acoust., Speech, Signal Process, vol.26, issue.1, pp.64-76, 1978.

F. Auger and P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE Trans. Signal Process, vol.43, issue.5, pp.1068-1089, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02493027

I. Daubechies and S. Maes, A nonlinear squeezing of the continuous wavelet transform, Wavelets in Medecine and Bio, pp.527-546, 1996.

F. Auger, P. Flandrin, Y. Lin, S. Mclaughlin, S. Meignen et al., TF reassignment and synchrosqueezing: An overview, IEEE Signal Process. Mag, vol.30, issue.6, pp.32-41, 2013.

D. Fourer, J. Harmouche, J. Schmitt, T. Oberlin, S. Meignen et al., The ASTRES toolbox for mode extraction of nonstationary multicomponent signals, Proc. EUSIPCO, pp.1170-1174, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579903

R. Souriau, D. Fourer, H. Chen, J. Lerbet, H. Maaref et al., High-voltage spindles detection from EEG signals using recursive synchrosqueezing transform, Proc. GRETSI'19, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02140264

D. Fourer and F. Auger, Second-Order Time-Reassigned synchrosqueezing transform: Application to Draupner wave analysis, Proc. EUSIPCO 2019, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02146678

D. Pham and S. Meignen, High-order synchrosqueezing transform for multicomponent signals analysiswith an application to gravitationalwave signal, IEEE Transactions on Signal Processing, vol.65, issue.12, pp.3168-3178, 2017.

T. Oberlin, S. Meignen, and V. Perrier, Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations, IEEE Trans. Signal Process, vol.63, issue.5, pp.1335-1344, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00994883

D. Fourer, F. Auger, K. Czarnecki, M. , and F. , Chirp rate and instantaneous frequency estimation: Application to recursive vertical synchrosqueezing, IEEE Signal Process. Lett, vol.24, issue.11, pp.1724-1728, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579909

F. Auger, E. Chassande-mottin, and P. Flandrin, Making reassignment adjustable: the Levenberg-Marquardt approach, Proc. IEEE ICASSP, pp.3889-3892, 2012.
URL : https://hal.archives-ouvertes.fr/ensl-00654808

D. Fourer, F. Auger, and P. Flandrin, Recursive versions of the Levenberg-Marquardt reassigned spectrogram and of the synchrosqueezed STFT, Proc. IEEE ICASSP, pp.4880-4884, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02493709

R. Stockwell, L. Mansinha, and R. Lowe, Localization of the complex spectrum: the S-transform, IEEE Trans. Signal Process, vol.44, issue.4, pp.998-1001, 1996.

D. He, H. Cao, S. Wang, and X. Chen, Time-reassigned synchrosqueezing transform: The algorithm and its applications in mechanical signal processing, Mechanical Systems and Signal Processing, vol.117, pp.255-279, 2019.

J. C. Brown, Calculation of a constant-Q spectral transform, The Journal of the Acoustical Society of America, vol.89, issue.1, pp.425-434, 1991.

D. Fourer, F. Auger, and J. Hu, Reassigning and synchrosqueezing the Stockwell transform: Complementary proofs, Tech. Rep, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01467244

A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, IAM Journal of Mathematical Analysis, vol.15, issue.4, pp.723-736, 1984.

S. Ventosa, C. Simon, M. Schimmel, J. Danobeitia, and A. Manuel, The S-transform from a wavelet point of view, IEEE Trans. Signal Process, vol.56, issue.7, pp.2771-2780, 2008.