V. C. Chen, F. Li, S. -. Ho, and H. Wechsler, Micro-Doppler effect in radar: phenomenon, model, and simulation study, IEEE Trans. on Aerospace and Electronic Systems, vol.42, issue.1, pp.2-21, 2006.

Y. Wang, C. Feng, Y. Zhang, and Q. Ge, Classification of Space Targets with Micro-motion Based on Deep CNN, Proc. IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT), pp.557-561, 2019.

Y. Kim and H. Ling, Human Activity Classification Based on Micro-Doppler Signatures Using a SVM, IEEE Trans. on Geoscience and Remote Sensing, vol.47, issue.5, pp.1328-1337, 2009.

Y. Kim and T. Moon, Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, vol.13, pp.8-12, 2016.

A. Huizing, M. Heiligers, B. Dekker, J. Wit, L. Cifola et al., Deep Learning for Classification of Mini-UAVs Using Micro-Doppler Spectrograms in Cognitive Radar, IEEE Aerospace and Electronic Systems Magazine, vol.34, pp.46-56, 2019.

P. Zhang, L. Yang, G. Chen, and G. Li, Classification of drones based on micro-Doppler signatures with dual-band radar sensors, Proc. Progress in Electromagnetics Research Symposium -Fall (PIERS -FALL), Singapore, pp.638-643, 2017.

K. Abratkiewicz, D. Gromek, and P. Samczynski, Chirp Rate Estimation and micro-Doppler Signatures for Pedestrian Security Radar Systems, Proc. Signal Processing Symposium (SPSympo), pp.212-215, 2019.

A. Shrestha, Animal Lameness Detection With Radar Sensing, IEEE Geoscience and Remote Sensing Letters, vol.15, pp.1189-1193, 2018.

K. Kodera, C. Villedary, and R. Gendrin, A new method for the numerical analysis of non-stationary signals, Physics of the Earth and Planetary Interiors, vol.12, pp.142-150, 1976.

F. Auger and P. Flandrin, Improving the readability of time-frequency and time-scale representations by the reassignment method, IEEE Trans. on Signal Processing, vol.43, issue.5, pp.1068-1089, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02493027

S. Meignen, T. Oberlin, and S. Mclaughlin, A New Algorithm for Multicomponent Signals Analysis Based on SynchroSqueezing: With an Application to Signal Sampling and Denoising, IEEE Trans. on Signal Processing, vol.60, issue.11, pp.5787-5798, 2012.

F. Auger, E. Chassande-mottin, and P. Flandrin, Making reassignment adjustable: The Levenberg-Marquardt approach, Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.3889-3892, 2012.
URL : https://hal.archives-ouvertes.fr/ensl-00654808

F. Auger, Time-Frequency Reassignment and Synchrosqueezing: An Overview, IEEE Signal Processing Magazine, vol.30, issue.6, pp.32-41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00983755

D. Fourer, F. Auger, K. Czarnecki, S. Meignen, and P. Flandrin, Chirp Rate and Instantaneous Frequency Estimation: Application to Recursive Vertical Synchrosqueezing, IEEE Signal Processing Letters, vol.24, issue.11, pp.1724-1728, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579909

K. Abratkiewicz, D. Gromek, K. Stasiak, and P. Samczy?ski, Time-Frequency Reassigned Micro-Doppler Signature Analysis Using the XY-DemoRad System, Proc. Signal Processing Symposium (SPSympo), pp.331-334, 2019.

D. Fourer, F. Auger, and P. Flandrin, Recursive versions of the Levenberg-Marquardt reassigned spectrogram and of the synchrosqueezed STFT, Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4880-4884, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02493709

H. J. Nussbaumer, The fast Fourier transform. FFT and Convolution Algorithms, pp.80-111, 1981.

G. K. Nilsen, Recursive time-frequency reassignment, IEEE Trans. Signal Process, vol.57, issue.8, pp.3283-3287, 2009.

P. Samczynski, K. Stasiak, D. Gromek, K. Kulpa, and J. Misiurewicz, XY-DemoRad -Novel K-and mm-Band Radar Demo Kit for Educational and Commercial Applications, 20th International Radar Symposium (IRS), pp.1-11, 2019.

D. Fourer and F. Auger, Second-order Time-Reassigned Synchrosqueezing Transform: Application to Draupner Wave Analysis, Proc. 27th
URL : https://hal.archives-ouvertes.fr/hal-02146678

, European Signal Processing Conference, pp.1-5, 2019.

D. Fourer, J. Harmouche, J. Schmitt, T. Oberlin, S. Meignen et al., The ASTRES toolbox for mode extraction of nonstationary multicomponent signals, Proc. 25th European Signal Processing Conference (EUSIPCO), pp.1130-1134, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579903

R. G. Baraniuk, P. Flandrin, A. J. Janssen, and O. J. Michel, Measuring time-frequency information content using the Renyi entropies, IEEE Trans. on Information Theory, vol.47, issue.4, pp.1391-1409, 2001.