J. A. Castellanos, J. Martinez, J. Neira, and J. D. Tardos, Simultaneous map building and localization for mobile robots: A multisensor fusion approach, Proceedings of the 1998 IEEE International Conference on Robotics and Automation, vol.2, pp.1244-1249, 1998.

D. Nistér, O. Naroditsky, and J. Bergen, Visual odometry, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp.I-I, 2004.

C. Forster, M. Pizzoli, and D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, 2014 IEEE international conference on robotics and automation (ICRA), pp.15-22, 2014.

G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, Fusion of IMU and vision for absolute scale estimation in monocular SLAM, Journal of Intelligent & Robotic Systems, vol.61, issue.1, pp.287-299, 2011.

J. Levinson and S. Thrun, Robust vehicle localization in urban environments using probabilistic maps, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp.4372-4378, 2010.

Y. Verdie, F. Lafarge, and P. Alliez, Lod generation for urban scenes, ACM Trans. Graph, vol.34, issue.3, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01113078

F. I. Ireta-muñoz and A. I. Comport, Point-to-hyperplane icp: Fusing different metric measurements for pose estimation, Advanced Robotics Journal, 2017.

C. Kerl, J. Sturm, and D. Cremers, Dense visual slam for rgb-d cameras, IROS, 2013.

M. Meilland and A. Comport, On unifying key-frame and voxelbased dense visual slam at large scales, International Conference on Intelligent Robots and Systems, pp.3-8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01357359

T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison, Elasticfusion: Dense slam without a pose graph, Proceedings of Robotics: Science and Systems, 2015.

J. Engel, T. Schöps, and D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, ECCV, 2014.

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, MonoSLAM: Real-time single camera SLAM, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.6, pp.1052-1067, 2007.

J. Engel, J. Stueckler, and D. Cremers, Large-scale direct slam with stereo cameras, IROS, 2015.

T. Pire, T. Fischer, G. Castro, P. De-cristóforis, J. Civera et al., S-ptam: Stereo parallel tracking and mapping, Robotics and Autonomous Systems, vol.93, 2017.

H. Rebecq, T. Horstschaefer, G. Gallego, and D. Scaramuzza, Evo: A geometric approach to event-based 6-dof parallel tracking and mapping in real-time, IEEE Robotics and Automation Letters, 2016.

M. Meilland, A. I. Comport, and P. Rives, A spherical robot-centered representation for urban navigation, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.5196-5201, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01357375

P. Besl and N. D. Mckay, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.14, issue.2, pp.239-256, 1992.

A. Segal, D. Hähnel, and S. Thrun, Generalized-icp, 2009.

Y. Chen and G. Medioni, Object modeling by registration of multiple range images, IEEE International Conference on Robotics and Automation, 1991.

J. Serafin and G. Grisetti, Nicp: Dense normal based point cloud registration, IROS, pp.742-749, 2015.

J. Zhang and S. Singh, Loam: Lidar odometry and mapping in realtime, Proceedings of the Robotics: Science and Systems, 2014.

J. Behley and C. Stachniss, Efficient surfel-based slam using 3d laser range data in urban environments, 2018.

H. Huang, J. Zhao, and J. Liu, A survey of simultaneous localization and mapping, 2019.

C. Chang, H. Zhu, M. Li, and S. You, A review of visualinertial simultaneous localization and mapping from filtering-based and optimization-based perspectives, Robotics, vol.7, p.45, 2018.

H. Ye, Y. Chen, and M. Liu, Tightly coupled 3d lidar inertial odometry and mapping, 2019 International Conference on Robotics and Automation (ICRA), 2019.

C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang et al., Rlins: A robocentric lidar-inertial state estimator for robust and efficient navigation, 2019.

C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes et al., Elastic lidar fusion: Dense map-centric continuous-time slam, 2017.

Y. Balazadegan, S. Hosseinyalamdary, and Y. Gao, Visual-lidar odometry aided by reduced imu, ISPRS International Journal of Geo-Information, vol.5, p.3, 2016.

J. Zhang and S. Singh, Laser-visual-inertial odometry and mapping with high robustness and low drift, Journal of Field Robotics, 2018.

X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang, Lic-fusion: Lidarinertial-camera odometry, 2019.

W. Shao, S. Vijayarangan, C. Li, and G. Kantor, Stereo visual inertial lidar simultaneous localization and mapping, 2019.

F. I. Ireta-muñoz and A. I. Comport, Global point-to-hyperplane icp: Local and global pose estimation by fusing color and depth, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2017.

M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, G. Guennebaud et al., A survey of surface reconstruction from point clouds, Computer Graphics Forum, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01348404

M. Muja and D. G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, International Conference on Computer Vision Theory and Application VISSAPP'09), pp.331-340, 2009.

R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, G2o: A general framework for graph optimization, 2011 IEEE International Conference on Robotics and Automation, pp.3607-3613, 2011.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, A benchmark for the evaluation of rgb-d slam systems, Proc. of the International Conference on Intelligent Robot Systems (IROS), 2012.

R. Mur-artal and J. D. Tardós, Visual-inertial monocular SLAM with map reuse, IEEE Robotics and Automation Letters, vol.2, issue.2, pp.796-803, 2017.

D. Gálvez-lópez and J. D. Tardós, Bags of binary words for fast place recognition in image sequences, IEEE Transactions on Robotics, vol.28, issue.5, pp.1188-1197, 2012.

R. Mur-artal, J. Montiel, and J. D. Tardós, ORB-SLAM: A versatile and accurate monocular SLAM system, IEEE Transactions on Robotics, vol.31, issue.5, pp.1147-1163, 2015.

V. Kachurka, D. Roussel, H. Hadj-abdelkader, F. Bonardi, J. Didier et al., Swir camera-based localization and mapping in challenging environments, International Conference on Image Analysis and Processing, pp.446-456, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02271971

F. Lafarge and C. Mallet, Creating large-scale city models from 3d-point clouds: A robust approach with hybrid representation, International Journal of Computer Vision, vol.99, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759265

J. Bauchet and F. Lafarge, Kinetic shape reconstruction, ACM Trans. Graph, vol.39, issue.5, 2020.

R. Schnabel, R. Wahl, and R. Klein, Efficient ransac for point-cloud shape detection, Comput. Graph. Forum, vol.26, pp.214-226, 2007.

T. Qin, P. Li, and S. Shen, VINS-Mono: A robust and versatile monocular visual-inertial state estimator, IEEE Transactions on Robotics, vol.34, issue.4, pp.1004-1020, 2018.

W. S. Grant, R. C. Voorhies, and L. Itti, Finding planes in lidar point clouds for real-time registration, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.4347-4354, 2013.