T. Lindahl and D. E. Barnes, Repair of Endogenous DNA Damage, Cold Spring Harbor Symposia on Quantitative Biology, vol.65, issue.0, pp.127-134, 2000.

A. Torgovnick and B. Schumacher, DNA repair mechanisms in cancer development and therapy, Frontiers in Genetics, vol.6, 2015.

F. Dietlein, L. Thelen, and H. C. Reinhardt, Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches, Trends in Genetics, vol.30, issue.8, pp.326-339, 2014.

A. Tubbs and A. Nussenzweig, Endogenous DNA Damage as a Source of Genomic Instability in Cancer, Cell, vol.168, issue.4, pp.644-656, 2017.

A. Ciccia and S. J. Elledge, The DNA Damage Response: Making It Safe to Play with Knives, Molecular Cell, vol.40, issue.2, pp.179-204, 2010.

B. M. Sirbu and D. Cortez, DNA Damage Response: Three Levels of DNA Repair Regulation, Cold Spring Harbor Perspectives in Biology, vol.5, issue.8, pp.a012724-a012724, 2013.

S. Matsuoka, B. A. Ballif, A. Smogorzewska, E. R. Mcdonald, K. E. Hurov et al., ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage, Science, vol.316, issue.5828, pp.1160-1166, 2007.

M. Dutertre, G. Sanchez, J. Barbier, L. Corcos, and D. Auboeuf, The emerging role of pre-messenger RNA splicing in stress responses: Sending alternative messages and silent messengers, RNA Biology, vol.8, issue.5, pp.740-747, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00811559

M. Dutertre and S. Vagner, DNA-Damage Response RNA-Binding Proteins (DDRBPs): Perspectives from a New Class of Proteins and Their RNA Targets, Journal of Molecular Biology, vol.429, issue.21, pp.3139-3145, 2017.

R. D. Paulsen, D. V. Soni, R. Wollman, A. T. Hahn, M. C. Yee et al., A Genome-wide siRNA Screen Reveals Diverse Cellular Processes and Pathways that Mediate Genome Stability, Molecular Cell, vol.35, issue.2, pp.228-239, 2009.

B. Adamson, A. Smogorzewska, F. D. Sigoillot, R. W. King, and S. J. Elledge, A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response, Nature Cell Biology, vol.14, issue.3, pp.318-328, 2012.

M. Dutertre, S. Lambert, A. Carreira, M. Amor-guéret, and S. Vagner, DNA damage: RNA-binding proteins protect from near and far, Trends in Biochemical Sciences, vol.39, issue.3, pp.141-149, 2014.

M. Kai, Roles of RNA-Binding Proteins in DNA Damage Response, International Journal of Molecular Sciences, vol.17, issue.3, p.310, 2016.

A. K. Leung and . Poly, Poly(ADP-ribose): An organizer of cellular architecture, Journal of Cell Biology, vol.205, issue.5, pp.613-619, 2014.

Z. Hong, J. Jiang, J. Ma, S. Dai, T. Xu et al., The Role of hnRPUL1 Involved in DNA Damage Response Is Related to PARP1, PLoS ONE, vol.8, issue.4, p.e60208, 2013.

A. K. Leung and . Poly, Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation, Trends in Cell Biology, vol.30, issue.5, pp.370-383, 2020.

M. Altmeyer, K. J. Neelsen, F. Teloni, I. Pozdnyakova, S. Pellegrino et al., Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose), Nature Communications, vol.6, issue.1, 2015.

X. Sun, K. Fu, A. Hodgson, E. M. Wier, M. G. Wen et al., Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation, PLOS Biology, vol.14, issue.9, p.e1002543, 2016.

Y. Jang, Z. Elsayed, R. Eki, S. He, K. P. Du et al., Intrinsically disordered protein RBM14 plays a role in generation of RNA:DNA hybrids at double-strand break sites, Proceedings of the National Academy of Sciences, vol.117, issue.10, pp.5329-5338, 2020.

F. R. Althaus, H. E. Kleczowska, M. Malanga, C. R. Müntener, J. M. Pleschke et al., Poly ADP-ribosylation: A DNA break signal mechanism, Molecular and Cellular Biochemistry, vol.193, issue.1/2, pp.5-11, 1999.

D. D?amours, S. Desnoyers, I. D?silva, and G. G. Poirier, Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, Biochemical Journal, vol.342, issue.2, p.249, 1999.

K. W. Caldecott, Protein ADP-ribosylation and the cellular response to DNA strand breaks, DNA Repair, vol.19, pp.108-113, 2014.

C. C. Kiehlbauch, N. Aboulela, E. L. Jacobson, D. P. Ringer, and M. K. Jacobson, High Resolution Fractionation and Characterization of ADP-Ribose Polymers, Analytical Biochemistry, vol.208, issue.1, pp.26-34, 1993.

R. Alvarez-gonzalez and M. K. Jacobson, Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo, Biochemistry, vol.26, issue.11, pp.3218-3224, 1987.

F. Teloni and M. Altmeyer, Readers of poly(ADP-ribose): designed to be fit for purpose, Nucleic Acids Research, vol.44, issue.3, pp.993-1006, 2015.

J. Gagné, M. Isabelle, K. S. Lo, S. Bourassa, M. J. Hendzel et al., Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes, Nucleic Acids Research, vol.36, issue.22, pp.6959-6976, 2008.

S. Jungmichel, F. Rosenthal, M. Altmeyer, J. Lukas, M. O. Hottiger et al., Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses, Molecular Cell, vol.52, issue.2, pp.272-285, 2013.

M. M. Babu, The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease, Biochemical Society Transactions, vol.44, issue.5, pp.1185-1200, 2016.

S. Boeynaems, S. Alberti, N. L. Fawzi, T. Mittag, M. Polymenidou et al., Protein Phase Separation: A New Phase in Cell Biology, Trends in Cell Biology, vol.28, issue.6, pp.420-435, 2018.

A. L. Darling, Y. Liu, C. J. Oldfield, and V. N. Uversky, Intrinsically Disordered Proteome of Human Membrane-Less Organelles, PROTEOMICS, vol.18, issue.5-6, p.1700193, 2017.

Z. Jaunmuktane and S. Brandner, Invited Review: The role of prion?like mechanisms in neurodegenerative diseases, Neuropathology and Applied Neurobiology, vol.46, issue.6, pp.522-545, 2020.

S. Yang, S. T. Warraich, G. A. Nicholson, and I. P. Blair, Fused in sarcoma/translocated in liposarcoma: A multifunctional DNA/RNA binding protein, The International Journal of Biochemistry & Cell Biology, vol.42, issue.9, pp.1408-1411, 2010.

R. R. Sama, C. L. Ward, and D. A. Bosco, Functions of FUS/TLS From DNA Repair to Stress Response: Implications for ALS, ASN Neuro, vol.6, issue.4, p.175909141454447, 2014.

H. Wang and M. L. Hegde, New Mechanisms of DNA Repair Defects in Fused in Sarcoma?Associated Neurodegeneration: Stage Set for DNA Repair-Based Therapeutics?, Journal of Experimental Neuroscience, vol.13, p.117906951985635, 2019.

P. Aman, I. Panagopoulos, C. Lassen, T. Fioretos, M. Mencinger et al., Expression Patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS, Genomics, vol.37, pp.1-8, 1996.

M. Gardiner, R. Toth, F. Vandermoere, N. A. Morrice, and J. Rouse, Identification and characterization of FUS/TLS as a new target of ATM, Biochemical Journal, vol.415, issue.2, pp.297-307, 2008.

W. Y. Wang, L. Pan, S. C. Su, E. J. Quinn, M. Sasaki et al., Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons, Nature Neuroscience, vol.16, issue.10, pp.1383-1391, 2013.

S. L. Rulten, A. Rotheray, R. L. Green, G. J. Grundy, D. A. Moore et al., PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage, Nucleic Acids Research, vol.42, issue.1, pp.307-314, 2013.

Q. Deng, C. J. Holler, G. Taylor, K. F. Hudson, W. Watkins et al., FUS is Phosphorylated by DNA-PK and Accumulates in the Cytoplasm after DNA Damage, Journal of Neuroscience, vol.34, issue.23, pp.7802-7813, 2014.

H. Wang, W. Guo, J. Mitra, P. M. Hegde, T. Vandoorne et al., Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis, Nature Communications, vol.9, issue.1, p.3683, 2018.

A. Crozat, P. Åman, N. Mandahl, and D. Ron, Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma, Nature, vol.363, issue.6430, pp.640-644, 1993.

T. H. Rabbitts, A. Forster, R. Larson, and P. Nathan, Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma, Nature Genetics, vol.4, issue.2, pp.175-180, 1993.

W. J. Law, K. L. Cann, G. G. Hicks, and . Tls, TLS, EWS and TAF15: a model for transcriptional integration of gene expression, Briefings in Functional Genomics and Proteomics, vol.5, issue.1, pp.8-14, 2006.

H. Kovar, . Dr, . Jekyll, . Mr, and . Hyde, Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family, Sarcoma, vol.2011, pp.1-13, 2011.

Y. Iko, T. S. Kodama, N. Kasai, T. Oyama, E. H. Morita et al., Domain Architectures and Characterization of an RNA-binding Protein, TLS, Journal of Biological Chemistry, vol.279, issue.43, pp.44834-44840, 2004.

B. J. Lee, A. E. Cansizoglu, K. E. Süel, T. H. Louis, Z. Zhang et al., Rules for Nuclear Localization Sequence Recognition by Karyopherin?2, Cell, vol.126, issue.3, pp.543-558, 2006.

D. D. Prasad, M. Ouchida, L. Lee, V. N. Rao, E. S. Reddy et al., FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t (16; 21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain, Oncogene, vol.9, pp.3717-3729, 1994.

H. Zinszner, D. Immanuel, Y. Yin, F. Liang, and D. Ron, A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited, Oncogene, vol.14, issue.4, pp.451-461, 1997.

H. Baechtold, M. Kuroda, J. Sok, D. Ron, B. S. Lopez et al., Human 75-kDa DNA-pairing Protein Is Identical to the Pro-oncoprotein TLS/FUS and Is Able to Promote D-loop Formation, Journal of Biological Chemistry, vol.274, issue.48, pp.34337-34342, 1999.

D. Perrotti, S. Bonatti, R. Trotta, R. Martinez, T. Skorski et al., TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis, The EMBO Journal, vol.17, issue.15, pp.4442-4455, 1998.

A. S. Mastrocola, S. H. Kim, A. T. Trinh, L. A. Rodenkirch, and R. S. Tibbetts, The RNA-binding Protein Fused in Sarcoma (FUS) Functions Downstream of Poly(ADP-ribose) Polymerase (PARP) in Response to DNA Damage, Journal of Biological Chemistry, vol.288, issue.34, pp.24731-24741, 2013.

I. Kwon, M. Kato, S. Xiang, L. Wu, P. Theodoropoulos et al., Phosphorylation-Regulated Binding of RNA Polymerase II to Fibrous Polymers of Low-Complexity Domains, Cell, vol.155, issue.5, pp.1049-1060, 2013.

M. Kato, T. W. Han, S. Xie, K. Shi, X. Du et al., Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels, Cell, vol.149, issue.4, pp.753-767, 2012.

Y. Shang and E. J. Huang, Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis, Brain Research, vol.1647, pp.65-78, 2016.

T. W. Han, M. Kato, S. Xie, L. C. Wu, H. Mirzaei et al., Cell-free Formation of RNA Granules: Bound RNAs Identify Features and Components of Cellular Assemblies, Cell, vol.149, issue.4, pp.768-779, 2012.

A. Patel, H. O. Lee, L. Jawerth, S. Maharana, M. Jahnel et al., A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation, Cell, vol.162, issue.5, pp.1066-1077, 2015.

C. J. Webber, S. (. Lei, and B. Wolozin, The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation, Dancing Protein Clouds: Intrinsically Disordered Proteins in Health and Disease, Part B, vol.2020, pp.187-223, 2020.

T. M. Franzmann and S. Alberti, Prion-like low-complexity sequences: Key regulators of protein solubility and phase behavior, Journal of Biological Chemistry, vol.294, issue.18, pp.7128-7136, 2018.

O. D. King, A. D. Gitler, and J. Shorter, The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease, Brain Research, vol.1462, pp.61-80, 2012.

Z. Sun, Z. Diaz, X. Fang, M. P. Hart, A. Chesi et al., Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS, PLoS Biology, vol.9, issue.4, p.e1000614, 2011.

P. Li, S. Banjade, H. C. Cheng, S. Kim, B. Chen et al., Phase transitions in the assembly of multivalent signalling proteins, Nature, vol.483, issue.7389, pp.336-340, 2012.

K. A. Burke, A. M. Janke, C. L. Rhine, and N. L. Fawzi, Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II, Molecular Cell, vol.60, issue.2, pp.231-241, 2015.

Y. Lin, D. S. Protter, M. K. Rosen, and R. Parker, Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins, Molecular Cell, vol.60, issue.2, pp.208-219, 2015.

A. C. Murthy, G. L. Dignon, Y. Kan, G. H. Zerze, S. H. Parekh et al., Molecular interactions underlying liquid?liquid phase separation of the FUS low-complexity domain, Nature Structural & Molecular Biology, vol.26, issue.7, pp.637-648, 2019.

J. Wang, J. M. Choi, A. S. Holehouse, H. O. Lee, X. Zhang et al., A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins, Cell, vol.174, issue.3, pp.688-699.e16, 2018.

D. Dormann and C. Haass, Fused in sarcoma (FUS): An oncogene goes awry in neurodegeneration, Molecular and Cellular Neuroscience, vol.56, pp.475-486, 2013.

E. Gomes and J. Shorter, The molecular language of membraneless organelles, Journal of Biological Chemistry, vol.294, issue.18, pp.7115-7127, 2018.

Y. Lin, S. L. Currie, and M. K. Rosen, Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs, Journal of Biological Chemistry, vol.292, issue.46, pp.19110-19120, 2017.

Y. Nishimoto, S. Nakagawa, T. Hirose, H. J. Okano, M. Takao et al., The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis, Molecular Brain, vol.6, issue.1, p.31, 2013.

T. Yamazaki, S. Chen, Y. Yu, B. Yan, T. C. Haertlein et al., FUS-SMN Protein Interactions Link the Motor Neuron Diseases ALS and SMA, Cell Reports, vol.2, issue.4, pp.799-806, 2012.

R. R. Sama, C. L. Ward, L. J. Kaushansky, N. Lemay, S. Ishigaki et al., FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress, Journal of Cellular Physiology, vol.228, issue.11, pp.2222-2231, 2013.

J. Gal, J. Zhang, D. M. Kwinter, J. Zhai, H. Jia et al., Nuclear localization sequence of FUS and induction of stress granules by ALS mutants, Neurobiology of Aging, vol.32, issue.12, pp.2323.e27-2323.e40, 2011.

D. Dormann, R. Rodde, D. Edbauer, E. Bentmann, I. Fischer et al., ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import, The EMBO Journal, vol.29, issue.16, pp.2841-2857, 2010.

D. A. Bosco, N. Lemay, H. K. Ko, H. Zhou, C. Burke et al., Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules, Human Molecular Genetics, vol.19, issue.21, pp.4160-4175, 2010.

D. Ito, M. Seki, Y. Tsunoda, H. Uchiyama, and N. Suzuki, Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS, Annals of Neurology, vol.69, issue.1, pp.152-162, 2010.

C. Vance, E. L. Scotter, A. L. Nishimura, C. Troakes, J. C. Mitchell et al., ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules, Human Molecular Genetics, vol.22, issue.13, pp.2676-2688, 2013.

D. M. Baron, L. J. Kaushansky, C. L. Ward, R. R. Sama, R. Chian et al., Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics, Molecular Neurodegeneration, vol.8, issue.1, p.30, 2013.

T. A. Shelkovnikova, H. K. Robinson, N. Connor-robson, and V. L. Buchman, Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm, Cell Cycle, vol.12, issue.19, pp.3383-3391, 2013.

T. A. Shelkovnikova, H. K. Robinson, J. A. Southcombe, N. Ninkina, and V. L. Buchman, Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms, Human Molecular Genetics, vol.23, issue.19, pp.5211-5226, 2014.

S. Sun, S. C. Ling, J. Qiu, C. P. Albuquerque, Y. Zhou et al., ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP, Nature Communications, vol.6, issue.1, p.6171, 2015.

A. Yoshimura, R. Fujii, Y. Watanabe, S. Okabe, K. Fukui et al., Myosin-Va Facilitates the Accumulation of mRNA/Protein Complex in Dendritic Spines, Current Biology, vol.16, issue.23, pp.2345-2351, 2006.

R. Fujii and T. Takumi, TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines, Journal of Cell Science, vol.118, issue.24, pp.5755-5765, 2005.

M. K. Andersson, A. Ståhlberg, Y. Arvidsson, A. Olofsson, H. Semb et al., The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response, BMC Cell Biology, vol.9, issue.1, 2008.

Y. Zhou, S. Liu, A. Öztürk, and G. G. Hicks, FUS-regulated RNA metabolism and DNA damage repair, Rare Diseases, vol.2, issue.1, p.e29515, 2014.

O. D. Schärer, Chemistry and Biology of DNA Repair, Angewandte Chemie International Edition, vol.42, issue.26, pp.2946-2974, 2003.

R. Ceccaldi, B. Rondinelli, and A. D. D?andrea, Repair Pathway Choices and Consequences at the Double-Strand Break, Trends in Cell Biology, vol.26, issue.1, pp.52-64, 2016.

W. A. Beard, J. K. Horton, R. Prasad, and S. H. Wilson, Eukaryotic Base Excision Repair: New Approaches Shine Light on Mechanism, Annual Review of Biochemistry, vol.88, issue.1, pp.137-162, 2019.

G. G. Hicks, N. Singh, A. Nashabi, S. Mai, G. Bozek et al., Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death, Nature Genetics, vol.24, issue.2, pp.175-179, 2000.

M. Kuroda, J. Sok, L. Webb, H. Baechtold, F. Urano et al., Male sterility and enhanced radiation sensitivity in TLS-/- mice, The EMBO Journal, vol.19, issue.3, pp.453-462, 2000.

J. Guirouilh-barbat, S. Lambert, P. Bertrand, and B. S. Lopez, Is homologous recombination really an error-free process?, Frontiers in Genetics, vol.5, 2014.

L. Yang, J. Gal, J. Chen, and H. Zhu, Self-assembled FUS binds active chromatin and regulates gene transcription, Proceedings of the National Academy of Sciences, vol.111, issue.50, pp.17809-17814, 2014.

M. M. Dobbin, R. Madabhushi, L. Pan, Y. Chen, D. Kim et al., SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons, Nature Neuroscience, vol.16, issue.8, pp.1008-1015, 2013.

E. N. Guerrero, H. Wang, J. Mitra, P. M. Hegde, S. E. Stowell et al., TDP-43/FUS in motor neuron disease: Complexity and challenges, Progress in Neurobiology, vol.145-146, pp.78-97, 2016.

K. Takahama, A. Takada, S. Tada, M. Shimizu, K. Sayama et al., Regulation of Telomere Length by G-Quadruplex Telomere DNA- and TERRA-Binding Protein TLS/FUS, Chemistry & Biology, vol.20, issue.3, pp.341-350, 2013.

E. E. Alemasova and O. I. Lavrik, Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins, Nucleic Acids Research, vol.47, issue.8, pp.3811-3827, 2019.

S. O. Ali, F. A. Khan, M. A. Galindo-campos, and J. Yélamos, Understanding specific functions of PARP-2: New lessons for cancer therapy, Am. J. Cancer Res, vol.6, pp.1842-1863, 2016.

M. J. Suskiewicz, L. Palazzo, R. Hughes, and I. Ahel, Progress and outlook in studying the substrate specificities of PARPs and related enzymes, The FEBS Journal, 2020.

L. Davidovic, M. Vodenicharov, E. B. Affar, and G. G. Poirier, Importance of Poly(ADP-Ribose) Glycohydrolase in the Control of Poly(ADP-Ribose) Metabolism, Experimental Cell Research, vol.268, issue.1, pp.7-13, 2001.

M. Mashimo and J. Moss, Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADPRibose) Polymerase-1 Response to Oxidative Stress, Current Protein & Peptide Science, vol.17, issue.7, pp.633-640, 2016.

T. Kamaletdinova, Z. Fanaei-kahrani, and Z. Q. Wang, The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers, Cells, vol.8, issue.12, p.1625, 2019.

A. S. Singatulina, L. Hamon, M. V. Sukhanova, B. Desforges, V. Joshi et al., PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA, Cell Reports, vol.27, issue.6, pp.1809-1821.e5, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02167709

K. Martin-hernandez, J. M. Rodriguez-vargas, V. Schreiber, and F. Dantzer, Expanding functions of ADP-ribosylation in the maintenance of genome integrity, Seminars in Cell & Developmental Biology, vol.63, pp.92-101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02369920

S. N. Khodyreva and O. I. Lavrik, Poly(ADP-Ribose) polymerase 1 as a key regulator of DNA repair, Molecular Biology, vol.50, issue.4, pp.580-595, 2016.

S. C. Lenzken, B. R. Levone, G. Filosa, M. Antonaci, F. Conte et al., FUS-dependent phase separation initiates double-strand break repair, vol.798884, 2019.

J. E. Sleeman and L. Trinkle-mulcahy, Nuclear bodies: new insights into assembly/dynamics and disease relevance, Current Opinion in Cell Biology, vol.28, pp.76-83, 2014.

F. Erdel and K. Rippe, Formation of Chromatin Subcompartments by Phase Separation, Biophysical Journal, vol.114, issue.10, pp.2262-2270, 2018.

T. Yoshizawa, R. S. Nozawa, T. Z. Jia, T. Saio, and E. Mori, Biological phase separation: cell biology meets biophysics, Biophysical Reviews, vol.12, issue.2, pp.519-539, 2020.

H. Yoo, C. Triandafillou, and D. A. Drummond, Cellular sensing by phase separation: Using the process, not just the products, Journal of Biological Chemistry, vol.294, issue.18, pp.7151-7159, 2019.

T. Murakami, S. Qamar, J. Q. Lin, G. S. Schierle, E. Rees et al., ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function, Neuron, vol.88, issue.4, pp.678-690, 2015.

D. T. Murray, M. Kato, Y. Lin, K. R. Thurber, I. Hung et al., Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains, Cell, vol.171, issue.3, pp.615-627.e16, 2017.

A. G. Niaki, J. Sarkar, X. Cai, K. Rhine, V. Vidaurre et al., Loss of Dynamic RNA Interaction and Aberrant Phase Separation Induced by Two Distinct Types of ALS/FTD-Linked FUS Mutations, Molecular Cell, vol.77, issue.1, pp.82-94.e4, 2020.

E. Bentmann, M. Neumann, S. Tahirovic, R. Rodde, D. Dormann et al., Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and TAR DNA-binding Protein of 43 kDa (TDP-43), Journal of Biological Chemistry, vol.287, issue.27, pp.23079-23094, 2012.

S. C. Weber, Evidence for and against liquid-liquid phase separation in the Nucleus, Non-Coding RNA, vol.5, p.50, 2019.

M. V. Sukhanova, S. Abrakhi, V. Joshi, D. Pastre, M. M. Kutuzov et al., Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging, Nucleic Acids Research, vol.44, issue.6, pp.e60-e60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02183571

J. M. Pleschke, H. E. Kleczkowska, M. Strohm, and F. R. Althaus, Poly(ADP-ribose) Binds to Specific Domains in DNA Damage Checkpoint Proteins, Journal of Biological Chemistry, vol.275, issue.52, pp.40974-40980, 2000.

A. E. Fisher, H. Hochegger, S. Takeda, and K. W. Caldecott, Poly(ADP-Ribose) Polymerase 1 Accelerates Single-Strand Break Repair in Concert with Poly(ADP-Ribose) Glycohydrolase, Molecular and Cellular Biology, vol.27, issue.15, pp.5597-5605, 2007.

N. A. Moor, I. A. Vasil?eva, N. A. Kuznetsov, and O. I. Lavrik, Human apurinic/apyrimidinic endonuclease 1 is modified in vitro by poly(ADP-ribose) polymerase 1 under control of the structure of damaged DNA, Biochimie, vol.168, pp.144-155, 2020.

C. Liu, A. Vyas, M. A. Kassab, A. K. Singh, and X. Yu, The role of poly ADP-ribosylation in the first wave of DNA damage response, Nucleic Acids Research, vol.45, issue.14, pp.8129-8141, 2017.

M. Naumann, A. Pal, A. Goswami, X. Lojewski, J. Japtok et al., Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation, Nature Communications, vol.9, issue.1, p.335, 2018.

L. Mcgurk, O. M. Rifai, and N. M. Bonini, Poly(ADP-Ribosylation) in Age-Related Neurological Disease, Trends in Genetics, vol.35, issue.8, pp.601-613, 2019.

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2020 by the authors. Licensee MDPI