J. Redmon and A. Farhadi, Yolo9000: better, faster, stronger, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.7263-7271, 2017.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A Large-Scale Hierarchical Image Database, p.9, 2009.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler et al., The cityscapes dataset for semantic urban scene understanding, Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Y. Lecun and C. Cortes, MNIST handwritten digit database, 2010.

L. Perez and J. Wang, The effectiveness of data augmentation in image classification using deep learning, CoRR, 2017.

K. Berger, R. Voorhies, and L. H. Matthies, Depth from stereo polarization in specular scenes for urban robotics, 2017 IEEE International Conference on, pp.1966-1973, 2017.

Z. Cui, J. Gu, B. Shi, P. Tan, and J. Kautz, Polarimetric multi-view stereo, Proc. of Computer Vision and Pattern Recognition (CVPR, 2017.

M. Rastgoo, C. Demonceaux, R. Seulin, and O. Morel, Attitude estimation from polarimetric cameras, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems-IROS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865236

C. V. Nguyen, M. Milford, and R. Mahony, 3d tracking of water hazards with polarized stereo cameras, 2017 IEEE International Conference on, pp.5251-5257, 2017.

B. M. Ratliff, C. F. Lacasse, and J. S. Tyo, Interpolation strategies for reducing ifov artifacts in microgrid polarimeter imagery, Optics express, vol.17, issue.11, pp.9112-9125, 2009.

L. B. Wolff and A. G. Andreou, Polarization camera sensors, Image and Vision Computing, vol.13, issue.6, pp.497-510, 1995.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoderdecoder with atrous separable convolution for semantic image segmentation, pp.801-818, 2018.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, Enet: A deep neural network architecture for real-time semantic segmentation, 2016.

G. Lin, A. Milan, C. Shen, and I. D. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmentation, Cvpr, vol.1, p.5, 2017.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE transactions on pattern analysis and machine intelligence, vol.40, pp.834-848, 2018.

L. Li, B. Qian, J. Lian, W. Zheng, and Y. Zhou, Traffic scene segmentation based on rgb-d image and deep learning, IEEE Transactions on Intelligent Transportation Systems, vol.19, issue.5, pp.1664-1669, 2018.

Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang, Deep learning markov random field for semantic segmentation, IEEE transactions on pattern analysis and machine intelligence, vol.40, pp.1814-1828, 2018.

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, Indoor segmentation and support inference from rgbd images, European Conference on Computer Vision, pp.746-760, 2012.

M. Cimpoi, S. Maji, and A. Vedaldi, Deep filter banks for texture recognition and segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3828-3836, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263622

A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and R. Cipolla, Understanding real world indoor scenes with synthetic data, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, Proc. Computer Vision and Pattern Recognition (CVPR), vol.1, p.4, 2017.

A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser et al., Scannet: Richly-annotated 3d reconstructions of indoor scenes, CVPR, vol.2, p.10, 2017.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

M. Havaei, A. Davy, D. Warde-farley, A. Biard, A. Courville et al., Brain tumor segmentation with deep neural networks, Medical image analysis, vol.35, pp.18-31, 2017.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. Setio, F. Ciompi et al., A survey on deep learning in medical image analysis, Medical image analysis, vol.42, pp.60-88, 2017.

S. Rahmann and N. Canterakis, Reconstruction of specular surfaces using polarization imaging, p.149, 2001.

O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging, Applied optics, vol.45, issue.17, pp.4062-4068, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00514527

O. Morel, F. Meriaudeau, C. Stolz, and P. Gorria, Polarization imaging applied to 3d reconstruction of specular metallic surfaces, Machine Vision Applications in Industrial Inspection XIII, vol.5679, pp.178-187, 2005.

A. E. Shabayek, C. Demonceaux, O. Morel, and D. Fofi, Vision based uav attitude estimation: Progress and insights, Journal of Intelligent & Robotic Systems, vol.65, issue.1-4, pp.295-308, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00759018

M. Iqbal, M. Morel, and F. Meriaudeau, A survey on outdoor water hazard detection, Skripsi Program Studi Siste Informasi, 2009.

O. Morel, R. Seulin, and D. Fofi, Catadioptric camera calibration by polarization imaging, Iberian Conference on Pattern Recognition and Image Analysis, pp.396-403, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00608492

A. Kadambi, V. Taamazyan, B. Shi, and R. Raskar, Polarized 3d: Highquality depth sensing with polarization cues, Proceedings of the IEEE International Conference on Computer Vision, pp.3370-3378, 2015.

G. H. Joblove and D. Greenberg, Color spaces for computer graphics, ACM siggraph computer graphics, vol.12, issue.3, pp.20-25, 1978.