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Abstract 

We recetly identified a signaling pathway that links the upregulation of miR-379 with a 

mitochondrial response in dystrophic muscle. In the present commentary, we explain the 

significance that this pathway may have in mitochondrial dysfunction in Duchenne muscular 

dystrophy (DMD). We identified the upregulation of miR-379 in the serum and muscles of 

DMD animal models and patients. We found that miR-379 is one of very few miRNAs whose 

expression was normalized in DMD patients treated with glucocorticoid. We identified EIF4G2 

as an miR-379 target, which may promote mitochondrial oxidative phosphorylation (OxPhos) 

in the skeletal muscle. We found enriched EIF4G2 expression in oxidative fibers, and 

identified the mitochondrial ATP synthase subunit DAPIT as a translational target of EIF4G2. 

The identified signaling cascade, which comprises miR-379, EIF4G2 and DAPIT, may link the 

glucocorticoid treatment in DMD to a recovered mitochondrial ATP synthesis rate. We 

propose an updated model of mitochondrial dysfunction in DMD.  

Key Words: Duchenne Muscular Dystrophy; DLK1-DIO3; miR-379, EIF4G2, Dapit, 

USMG5, mitochondria; oxidative phosphorylation. 
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 Duchenne Muscular Dystrophy (DMD) is an X-linked 

severe progressive muscle disease caused by mutations 

in the DMD gene, which encodes for the dystrophin 

protein. The disease affects the motor functions and 

leads to premature patients death, primarily due to 

respiratory and cardiac failures.
1
 The consequence of 

the disrupted link between the ECM and the actin 

cytoskeleton is a process that involves sarcolemma 

destabilization, perturbation of Ca
+2 

homeostasis, 

activation of proteases, mitochondrial damage and 

tissue degeneration.
2
  

Of particular interest for this commentary, initial and 

more recent studies highlighted over the years a critical 

role for mitochondrial dysfunction in the etiology of 

DMD.
3
 However, the details of the molecular 

mechanisms of this dysfunction are not yet clear. We 

recently profiled miRNAs in the plasma and muscles of 

DMD animal models and patients, and found a large 

number of dysregulated miRNAs.
4-6

 In agreement with 

other studies, we documented the dysregulation of the 

myomiRs, which are the skeletal muscle enriched 

miRNAs, and a few cardiac-muscle-enriched miRNAs. 

In addition, we identified the dysregulation of a large 

number of miRNAs which are clustered in the Dlk1-

Dio3 genomic locus. The imprinted Dlk1-Dio3 locus 

hosts the largest miRNA mega-cluster in the human 

genome, plus other non-coding RNAs and three protein-

coding genes (DLK1, RTL1, and DIO3) and is highly 

conserved in mammalian genomes.
7,8

 Dlk1-Dio3 

miRNAs (DD-miRNAs) have shown to play a critical 

role in fetal development and postnatal growth.
9-12

 DD-

miRNAs are also known to play important roles in 

embryonic and somatic stem cells.
13-16

 Initial indications 

for Dlk1-Dio3 locus involvement in the muscular 

system came from the identification of the muscle 

hypertrophy Callipyge phenotype in the sheep.
17-19

 

Additionally, patients carrying genetic defects in Dlk1-

Dio3 locus present hypotonia and muscle metabolic 

deficiencies.
20

 In the cardiac muscle, DD-miRNAs were 

shown to regulate diverse functions.
21

 In the developing 

muscle, DD-miRNAs were shown to control the 

metabolic maturation of muscle precursor cells.
16

 

However, the biological functions of DD-miRNAs in 

the context of muscular dystrophy remain relatively 

unexplored. 

Of all dysregulated DD-miRNAs, we decided to focus 

on miR-379, which was found upregulated in many 

other muscular dystrophies in addition to DMD.
22

 We 

found that miR-379 is among the most highly expressed 

and upregulated in DMD plasma. Importantly, it is one 

of the very few miRNAs whose expression is 

normalized by glucocorticoid treatment,
6
 which is the 

standard pharmacological care for Duchenne Muscular 
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Dystrophy.
23

 We then identified the translation factor 

EIF4G2 as a potentially important target and mediator 

of miR-379 function in the muscle. EIF4G2, a member 

of the eIF4G translation initiation factors, mediates a 

cap-independent translation initiation through a 

mechanism involving the recruitment of the ribosome to 

specific mRNAs that contain an internal ribosome entry 

site (IRES) in their 5’ untranslated region (UTR).
24

 Our 

attention was drawn to EIF4G2, because it was shown 

recently to promote a mitochondrial shift of glycolytic 

to OxPhos metabolism, and subsequently of cellular 

differentiation.
24

 Of interest, mitochondrial OxPhos 

activity was shown to promote myogenic 

differentiation,
25

 suggesting that EIF4G2 may promote 

myogenic differentiation by such mechanism. We then 

noticed that EIF4G2 is a target gene for miR-139, which 

similarly to miR-379, belongs to the small group of 

glucocorticoid-responsive miRNAs in the plasma of 

DMD patients.
6
 Thus, in the dystrophic muscle EIF4G2 

is under a tight regulation, independently by two distinct 

glucocorticoid-responsive miRNAs, which supported a 

particular importance of EIF4G2 in the glucocorticoid 

response of the dystrophic muscle. 

Because EIF4G2 is a translation factor known to 

promote the mitochondrial OxPhos, we attempted to 

identify its putative translation target(s) in the context of 

mitochondrial activity. In a list of such targets, provided 

in supplemental information in,
24

 we identified among 

the top hits the mitochondrial protein DAPIT, which is 

encoded by the Usmg5 gene. DAPIT struck our 

attention, because it has been shown previously to be 

expressed nearly 5-fold higher levels in DMD patients 

with loss of ambulation at late stage as opposed to early 

stage,
26

 and more recently to be upregulated in the 

muscle of the neonatal DMD pig model.
27

 DAPIT is a 

mitochondrial ATP synthase peripheral stalk subunit, 

which is required for the dimerization of the ATP 

Synthase,
28

 the shaping of the mitochondrial cristae,
29

 

and a maximal ATP synthesis rate.
30

 Indeed, mutation in 

Usmg5 gene was found recently in Leigh syndrome 

patients, characterized by mitochondrial perturbations.
31

 

We thus hypothesized that EIF4G2 and DAPIT are of 

interest in DMD as targets of miR-379.  

We validated in human myoblasts the targeting of 

EIF4G2 by miR-379 and miR-139, and the 

subsequently downregulation of DAPIT, thus 

experimentally linking the upregulation of miR-379 to 

reduced EIF4G2 expression and of DAPIT in the 

myogenic lineage. Immunofluorescence analysis of 

muscle transversal sections in the mouse confirmed the 

co-localization of both EIF4G2 and DAPIT to oxidative 

myofibers. We then knocked down DAPIT expression, 

in vitro, in skeletal muscle myotubes, and identified 

reduced ATP production in the condition of reduced 

DAPIT expression.
32

 Finally, treating mice with 

glucocorticoids increased EIF4G2 and DAPIT 

expression in skeletal muscle via the reduction of miR-

379 level, as seen in DMD patients. Taken together, 

these findings experimentally confirm a glucocorticoid-

responsive signaling pathway in the myogenic lineage 

that links miR-379 upregulation with a reduced ATP 

synthesis rate. 

In 1975 Mokri end Engel, who investigated muscle 

biopsies by electron microscopy, identified structural 

defects in the plasma membrane of DMD myofibers, 

which permitted the penetration of calcium-rich 

extracellular fluid.
33,34

 Consistently, Wrogemann and 

Pena, proposed in 1976 the Ca
+2

 hypothesis for the 

mitochondrial dysfunction in muscular dystrophies.
35

 

Accordingly, the excessive entry of Ca
2+

 into the 

damaged myofiber initiates mitochondrial structural 

with subsequent functional defects reducing ATP 

production, and promoting a downstream cascade, 

leading to myofiber degeneration. Forty-five years later, 

through the discovery in the late eighties of the 

dystrophin gene and its role in DMD, the basic dogma 

of mitochondrial dysfunction has not much evolved,
36–38

 

assuming still that the mitochondria of the dystrophic 

muscle are merely passively exposed to the external 

insult of Ca
+2

 overload. Based on,
32

 we are suggesting 

now a modified model for the explanation of 

mitochondrial dysfunction in DMD, which is presented 

in figure 1. 

The results that were described above support that 

EIF4G2 might be involved in the promotion of an 

oxidative phenotype in the differentiated muscle. As 

previously mentioned in embryonic stem cells, EIF4G2 

was proposed to modulate cellular differentiation 

through the promotion of mitochondrial oxidation.
24

 

Oxidative phosphorylation is also crucial for myogenic 

differentiation.
25

 We identified the enriched expression 

of EIF4G2 in oxidative myofibers, in the skeletal 

muscle.
32

 It is possible that, by promoting the translation 

of DAPIT and other mitochondrial OxPhos proteins, 

EIF4G2 is an important mediator of the oxidative 

phenotype in the skeletal muscle. A shift to oxidative 

phenotype was proposed to be beneficial in DMD,
39

 and 

therefore it is tempting to speculate that overexpression 

of EIF4G2 in the muscle may provide protection in 

DMD.  

Another interesting question is concerning the 

expression pattern and biological functions of DAPIT. A 

number of studies reported DAPIT’s mitochondrial 

localization,
29-31

 as a component of the OxPhos complex 

5 ATP synthase.
28

 In the skeletal muscle of the mouse, 

high-resolution confocal microscopy shown co-

localization of DAPIT with EIF4G2 into oxidative 

fibers, with however only partial overlap with the 

mitochondrial ATP synthase ATP5a subunit.
32

 

Interestingly, in C2C12 myoblast DAPIT expression 

was identified in the lysosome, in addition to the 

mitochondria, possibly as a component of the lysosomal 

V-ATPase complex,
40

 which is structurally and 

mechanistically related to the mitochondrial ATP 

synthase. Thus, DAPIT may fulfill a (more than initially 

anticipated) complex role in the regulation of energy 
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metabolism in the normal and dystrophic skeletal, and 

cardiac,
41

 muscles, which is an interesting challenge for 

future investigations. Another hypothesis is that DD-

miRNAs, other than miR-379, might regulate 

mitochondrial functions in DMD. Clustered miRNAs 

are thought to coordinately regulate a large number of 

target transcripts in given signaling pathways.
42,43

 Of 

relevance and as mentioned above, we identified the 

coordinated upregulation of a large number of DD-

miRNAs in the serum and muscles of DMD models and 

patients. A coordinated simultaneous activity of DD-

miRNAs on mitochondrial functions were demonstrated 

in the hematopoietic system.
14

 Moreover, the 

coordinated targeting of DD-miRNAs of mitochondrial 

functions was demonstrated in the metabolic regulation 

of muscle precursor cells.
16

 It is therefore tempting to 

speculate that DD-miRNAs may simultaneously and 

coordinately regulate mitochondrial functions in 

myofibers of the regenerating muscle. An ongoing study 

in our group is toward these directions. In summary, our 

recent study,
32

 exposed a new signaling pathway which 

is dysregulated in DMD, and contributes to a better 

understanding of mitochondrial perturbation in DMD. 
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Fig 1. In the absence of dystrophin, activated miR-379 expression, which subsequently reducing EIF4G2 and 

DAPIT expression, reducing ATP synthase activity and ATP production, (see main text for details), might 

synergize with the external Ca
2+

 overload, to result in mitochondrial damage. 
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