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Abstract. Mutations in the Anoctamin 5 (Ano5) gene that result in the lack of expression or function of ANO5 protein, cause
Limb Girdle Muscular Dystrophy (LGMD) 2L/R12, and Miyoshi Muscular Dystrophy (MMD3). However, the dystrophic
phenotype observed in patient muscles is not uniformly recapitulated by ANO5 knockout in animal models of LGMD2L.
Here we describe the generation of a mouse model of LGMD2L generated by targeted out-of-frame deletion of the Ano5
gene. This model shows progressive muscle loss, increased muscle weakness, and persistent bouts of myofiber regeneration
without chronic muscle inflammation, which recapitulates the mild to moderate skeletal muscle dystrophy reported in the
LGMD2L patients. We show that these features of ANO5 deficient muscle are not associated with a change in the calcium-
activated sarcolemmal chloride channel activity or compromised in vivo regenerative myogenesis. Use of this mouse model
allows conducting in vivo investigations into the functional role of ANO5 in muscle health and for preclinical therapeutic
development for LGMD2L.
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INTRODUCTION 24

Muscular dystrophies are a diverse group of inher- 25

ited diseases that result in progressive loss of muscle 26

structure and function, that leads to weakness and 27

wasting of skeletal muscle. Among these, the Limb- 28

girdle muscular dystrophies (LGMD) represent a 29

group of myopathies where severely affected muscles 30

include the hip and shoulder girdles, with subse- 31

quent involvement of other limb muscles. LGMD 32

ISSN 2214-3599 © 2021 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).
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results in progressive muscle weakness from early33

childhood to late adulthood. Over two dozen genes34

responsible for LGMD have been identified, which35

lead to either recessive or dominant inheritance [1,36

2]. LGMD2L/ LGMDR12 is a recessive disorder37

with a prevalence of 0.2–2 patients / 100,000 that38

is amongst the 5 most common LGMDs [3–5]. It39

is caused by mutations in the gene that encodes40

the Anoctamin 5 (ANO5) or the Transmembrane16E41

(TMEM16E) protein [6–9]. ANO5/TMEM16E pro-42

tein belongs to a family of 10 related transmembrane43

proteins that function either as calcium-activated ion44

channels, lipid scramblases, or both [10, 11]. Among45

these, ANO1 (TMEM16A) and ANO2 (TMEM16B)46

encode calcium-activated chloride channels, while47

ANO6 (TEME16F) and ANO10 (TMEM16K) are48

phospholipid scramblases (PLS) [10–22]. ANO5 is49

the only member of this family that is associated50

with muscular dystrophy. This gene is expressed in51

bones, skeletal muscles, testes, and cardiac mus-52

cles [23–25]. Unlike the recessive Ano5 mutations,53

dominant mutations in Ano5 lead to the bone disor-54

der, gnathodiaphyseal dysplasia 1 (GDD1) [25, 26].55

While GDD1 is characterized by bone fragility and56

jawbone lesions, LGMD2L/R12 is characterized by57

increased serum level of muscle enzyme, myofiber58

damage, sporadic rhabdomyolysis, exercise-induced59

myalgia, proximal limb muscle pain and weakness,60

and difficulty walking and standing on toes [6, 8].61

Many of these clinical features are shared with other62

muscular dystrophies such as LGMD2B/R2, where63

mutations reduce or prevent expression of the mem-64

brane protein dysferlin, leading to increased myofiber65

death and muscle degeneration [27–29].66

Endogenous ANO5 protein localizes to the Sarco/67

Endoplasmic Reticulum (SER) membrane, but exo-68

genously expressed ANO5 is detected at the plasma69

membrane where it exhibits calcium-activated scr-70

amblase as well as ion channel activity [21, 25,71

30–34]. We recently identified the requirement of72

endogenously expressed ANO5 for calcium-act-73

ivated calcium uptake by the SER during cellular cal-74

cium overload [24, 35]. The ion channel and lipid75

scramblase activities of ANO5 have been implicated76

in sarcolemmal repair, myoblast fusion during muscle77

regeneration, and mouse sperm motility [24, 34–39].78

Further, biochemical studies of ANO5 and targeted79

GDD1 and LGMD2L patient mutations suggest that80

while the GDD1 associated mutations result in gain of81

ANO5 function, LGMD2L/R12 mutations are asso-82

ciated with the loss of ANO5 activity [30]. This83

view is supported by the observation that patient cells84

lacking detectable ANO5 protein exhibit poor mem- 85

brane repair [24, 35], indicating that Ano5 knockout 86

would be a suitable animal model for LGMD2L/R12. 87

Knockout animal models targeting different reg- 88

ions of Ano5 gene have been generated previously. 89

While deletion of the first two exons of Ano5 results 90

in no detectable muscle deficits [23, 39], Ano5 dis- 91

ruption in mouse by insertional deletion of exons 8–9 92

results in notable muscle pathology [37], and deletion 93

of exons 11–12 leads to bone weakness [40]. Dele- 94

tion of exons 12–13, with consequent disruption of 95

the Ano5 reading frame in rabbits faithfully recapitu- 96

lates the dystrophic muscle features [41]. With these 97

diverse outcomes identified from Ano5 knockout ani- 98

mal models, here we describe a ANO5 knockout 99

mouse model to investigate the ANO5 function in 100

muscular dystrophy. Our works build on two previ- 101

ous findings – symptomatic animal models involve 102

disruption of Ano5 gene in the region spanning exons 103

8–12, and cells lacking ANO5 protein exhibit ion 104

homeostasis and sarcolemmal repair deficit [30, 35]. 105

With ANO5 function linked to muscle cell mem- 106

brane repair, in vitro myoblast fusion, and plasma 107

membrane ion channel activity [24, 30–39], we have 108

examined these activities in vivo and assessed their 109

impact on muscle pathology in our model. Our find- 110

ings establish a new mouse model of LGMD2L and 111

the characterization we present here offers insights 112

into the in vivo relevance of ANO5 function for mus- 113

cle pathology in LGMD2L. 114

METHODS 115

Animals and knockout mouse generation 116

All animal procedures were conducted in accorda- 117

nce with guidelines for the care and use of labora- 118

tory animals and were approved by the Children’s 119

National Research Institute Animal Care and Use 120

Committee (#00030709), the local animal ethics 121

committee of University Lyon 1 and Ethical Com- 122

mittee for Animal Experimentation C2EA-51 of Evry 123

(#APAFIS#01304.01). C57BL/6J (WT) mice were 124

obtained from the Jackson Laboratory (Bar Harbor, 125

ME) and maintained in our animal facility for the 126

purpose of this study. All animals were maintained 127

in an individually vented cage system under a con- 128

trolled 12 h light/dark cycle with free access to food 129

and water and animals of both genders were used for 130

experiments. 131

Construction of the targeting vector and genera- 132

tion of the ANO5 knockout mouse was performed 133
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by Genoway (Lyon). A bacterial artificial chromo-134

some (BAC) library was screened using Ano5 primers135

allowing the identification of 3 clones covering the136

genomic region around exons 11 to 13 of the Ano5137

gene. These BAC were used to construct the targe-138

ting vector, which was electroporated into ES cells.139

After selection and analysis of the homologous140

recombination events, two positive ES clones were141

selected and then injected into C57BL/6J blasto-142

cysts that were reimplanted into foster mothers to143

generate chimeric mice. Five highly chimeric males144

were obtained and bred first with the deleter mice,145

constitutively expressing the Flp recombinase for146

deletion of the neomycin selection cassette. Result-147

ing animals were mated with mice transgenic for148

CMV-CRE, which permits the excision of the floxed149

Ano5 segment. The Cre transgene was segregated150

by a first cross on C57BL/6 background and the151

resulting heterozygous mice were backcrossed for152

10 generations on the C57Bl/6 and then interbred.153

For genotyping, genomic DNA from mouse tail was154

extracted and amplified using KAPA2G Fast Hot-155

Start Genotyping Mix, (Sigma, St. Louis, MO, USA)156

with the following: 49683cre-IRII.F: attcctgagaata157

tgtgtaattgtggcagc 49698flp-IRII.R: 5′-ccctagaactaca158

taatcttggtgtggtggtag -3′. A PCR fragment of 2,68 kb159

is generated for the WT allele and of 890 bp for the160

mutant allele.161

In vivo muscle injury, bromodeoxyuridine (BrdU)162

labelling, and immunostaining163

Muscles were injured by local injection of notexin164

in 10-month-old animals under isofluorane anaesthe-165

sia (42). Following removal of fur from the anterior166

hindlimb, 40 �l notexin (5 �g/ml, Latoxan, #L8104)167

was delivered by intramuscular injection into the tib-168

ialis anterior (TA) using a 0.3 ml ultrafine insulin169

syringe (BD Biosciences, #324906). Immediately170

prior to injection, the needle was dipped in green171

tattoo dye (Harvard Apparatus, #72-9384) to mark172

the needle track. For the first 7 days post injury,173

BrdU (Sigma-Aldrich, B9285) was administered ad174

libitum in sterile drinking water at a concentration175

of 0.8 mg/ml. Animals were euthanized either 7- or176

14-days post-injury, and tissues were harvested for177

analysis [43, 44].178

Skeletal muscles were dissected out and frozen179

in isopentane cooled in liquid nitrogen. Transverse180

cryosections (8-�m thickness) were prepared from181

frozen muscles and were processed for hematoxylin182

and eosin (H&E) and Laminin staining. Frozen183

sections were cut and fixed in ice-cold acetone 184

for 10 min, followed by incubation in 2 N HCl at 185

37◦C for 30 min, and then briefly neutralized with 186

0.15 M sodium tetraborate (Sigma-Aldrich, MO). 187

Following this, sections were blocked for 1 h in 188

phosphate-buffered saline (PBS) supplemented with 189

20% goat serum (GeneTex, CA), 0.1% tween-20 190

(Sigma-Aldrich, MO), and 10 mg/ml BSA (Sigma- 191

Aldrich, MO). Primary antibodies against BrdU 192

(B35138, 1 : 100, Life Technologies, CA) and laminin 193

(L9393, 1 : 400, Sigma-Aldrich, MO) were incubated 194

overnight at 4◦C. Sections were then washed and 195

probed with the appropriate Alexa Fluor secondary 196

antibody (Life Technologies, MA) at a dilution of 197

1 : 500 for 1 h at room temperature. Prior to mounting, 198

nuclei were counterstained with propidium iodide 199

(P4170, 2.5 � g/ml, Sigma-Aldrich, MO). Digital 200

images were captured with a VS120 virtual slide 201

microscope, and images were processed and quan- 202

tified using CellSens and ImageJ software. 203

Muscle force measurements 204

Forelimb and hindlimb grip-strength measurement 205

(GSM) were carried out using a grip strength meter 206

(Columbus Instruments, Columbus, OH, USA) as 207

previously described [45]. The animals were accli- 208

matized for 3 days before actual data collection. The 209

forelimb and hindlimb grip-strength data were then 210

collected over 5 consecutive days. Data were repre- 211

sented as averaged grip strength/kg body weight over 212

5 days. 213

To measure in vivo torque production of the ante- 214

rior crural muscles (TA, extensor digitorum longus 215

(EDL), peroneus tertius, and extensor hallucis 216

longus), mice were anesthetized with 1.5% isoflu- 217

rane-mixed O2 and hair was removed from the 218

lower hind limbs, while the foot was attached to 219

the dual-mode lever and maintained at a 90◦ angle 220

for isometric torque assessment (Aurora Scientific, 221

Aurora, Canada). Isometric muscle contractions were 222

stimulated at 1.0–2.0 mA using Pt-Ir needle electr- 223

odes inserted percutaneously adjacent to the per- 224

oneal nerve. Peak isometric torque was measured in 225

response to tetanic stimulations at 20, 40, 60, 80, 226

100, 120, 140, 160, 180, and 200 Hz, providing a 227

60s rest period between stimuli. The rate of rise 228

in torque was modeled using the exponential equa- 229

tion T = C(1-e−Df ), where T = torque produced at the 230

given frequency (f), C = maximal torque, and D = the 231

rate of rise in torque [46]. Here, we tested 10-month- 232

old, male WT and ANO5−/− mice (n = 5).
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Myofiber isolation and electrophysiology233

Mice were euthanized by cervical dislocation fol-234

lowed by removal of flexor digitorum brevis (FDB)235

muscles. Single fibers were isolated by a 50-minute236

enzymatic treatment at 37◦ C using a Tyrode solu-237

tion containing 2 mg/mL collagenase type I (Sigma).238

Fibers were voltage-clamped using the silicone clamp239

technique as previously described [47]. Briefly, a240

major part of a single fiber was electrically insu-241

lated with silicone grease and a micropipette was242

inserted into the fiber through the silicone layer to243

voltage clamp the portion of the fiber free of grease244

(50 to 150 �m length) using a patch-clamp ampli-245

fier (Bio-Logic RK-400, Claix, France) in whole-cell246

configuration. Analog compensation was systemati-247

cally used to decrease the effective series resistance.248

The tip of the micropipette was then crushed into249

the dish bottom to allow intracellular dialysis of the250

fiber with the intra-pipette solution. Cell capacitance251

was determined by integration of a current trace252

obtained with a 10-mV hyperpolarizing pulse from253

the holding potential and was used to calculate the254

density of currents (A/F). Currents were acquired at255

a sampling frequency of 10 kHz. Data are given as256

means ± S.E.M.257

The external solution contained (in mM) 140258

TEA-MeSO3 (9 mM Cl− containing solution) or259

140 TEA-Cl (149 mM Cl− containing solution), 2.5260

CaCl2, 2 MgCl2, 0.002 tetrodotoxin, 1 4-amin-261

opyridine and 10 HEPES adjusted to pH 7.2 with262

TEA-OH. The internal dialyzed solution contained263

(in mM) 140 K-glutamate, 2 EGTA, 5 Na2-ATP, 5264

Na2-phosphocreatine, 5 MgCl2, 5 glucose and 10265

HEPES adjusted to pH 7.2 with K-OH. The 2 mM266

internal [EGTA] prevented deterioration of the mus-267

cle fiber in response to large depolarizing pulses268

but preserved fiber contraction upon suprathresh-269

old depolarizations. Fibers were dialyzed with the270

intracellular solution through the micropipette during271

10 min prior starting the experiments.272

RNA isolation and quantitative RT-PCR273

RNA was extracted by the Trizol method from274

muscles previously sampled and frozen in liquid275

nitrogen. Residual DNA was removed from the sam-276

ples using Free DNA kit or Turbo DNA-free Kit277

(Ambion). One �g of RNA was reverse transcribed278

using the SuperScript II first strand synthesis kit279

(Invitrogen) or revertAid H Minus First Strand cDNA280

Synthesis kit (ThermoFisher) and random hexamers.281

Real-time PCR was performed using LightCycler480 282

29437 (Roche) Taqman Gene Expression or miR 283

Assays (ThermoFisher) or 0.2 �M of each primer 284

and 0.1 �M of the probe according to the protocol 285

Absolute QPCR Rox Mix (ThermoFisher). 286

Endogenous gene expression was quantified 287

using Taqman Gene Expression Assay: ANO5: Mm 288

00624629 m1; ANO6: Mm00614693 m1; ANO8: 289

Mm01343244 m1, MYMK Mm00481256 m1, CD 290

11b Mm00434455 m1, MYH3 Mm01332463 m1, 291

CD3G Mm00438095 m1, TIMP-1 Mm0131, IL1� 292

Mm00434228 m1, IL6 Mm00446190 m1, PLIN5 293

Mm00508852 m1, and COL6A3 Mm00711678 m1. 294

The ubiquitous acidic ribosomal phosphoprotein 295

(P0) was used to normalize the data across sam- 296

ples. The primer pairs and Taqman probe used for 297

P0 amplification were: m181PO.F (5′-CTCCAAG 298

CAGATGCAGCAGA-3′), m267PO.R (5′-ACCAT 299

GATGCGCAAGGCCAT-3′), m225PO.P (5′-CCG 300

TGGTGCTGATGGGCAAGAA-3′) and each exper- 301

iment was separately replicated. 302

Expression of miRNA were performed using Taq- 303

Man Assays miRNA: miR-21 (hsa-miR-21-5p) ref: 304

000397, miR-142 (hsa-miR142-3p) ref: 000464, 305

miR-31 (mmu-miR-31-5p) ref: 000185, miR 1(hsa- 306

miR1-3p) ref: 000385, miR-29a (hsa-miR29a-3p) 307

ref: 002112, and normalized using the expression of 308

U6 (U6 snRNA) ref: 001973. Fold change in RNA 309

expression (Fc) in tissues from ANO5-KO mice was 310

calculated using the traditional 2∧(–��Ct) method: 311

Fc = 2∧(–(�Ct – Avg �Ct WT)), allowing compar- 312

ison of Ct value with that obtained from tissue of 313

WT animals. Evaluation of consequences at RNA 314

level of the mutation in the model was performed 315

by RT-PCR on muscle extracts with the following 316

primers (Ex6.F : GAAGACGAGAGTTTGAACAA 317

AATCTCAGAAAAACAG, Ex14.R : CAAAGTAC- 318

CATGGGATGCGATGGC). The PCR generated 319

fragments of 1080 bp in WT and 778 bp in ANO5–/–. 320

Statistical analysis 321

The statistical analysis was carried out using the 322

GraphPad 8.0 Prism Software, where the data were 323

examined by pairwise testing by Mann–Whitney U 324

test or by Analysis of Variance (ANOVA). Outcome 325

of the statistical test is represented in the figures by 326

way of p values as indicated in figure legends. Each 327

plot shows the individual data point with the average 328

representing statistical mean and errors bars, unless 329

noted otherwise, indicate standard deviation (SD).
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RESULTS330

Generation of ANO5 knockout mouse model for331

LGMD2L332

To generate the mouse model of LGMD2L/R12,333

we synthesized a mouse Ano5 targeting vector com-334

posed of a long homology arm of 5.7 kb and a short335

arm of 1.9 kb on each side of a region encompassing336

exons 11–13 flanked by LoxP sites. Positive selec-337

tion by neomycin gene flanking by FRT sequences338

was also added in the vector. Through homologous339

recombination using this vector we disrupted the pre-340

dicted transmembrane domain of the mouse ANO5341

protein, by out of frame deletion of exons 10 to 12342

(Fig. 1A). In the resulting chimeric animals, the neo343

gene and rest of the insertional cassette was excised344

by crossing with Flp and CRE recombinase under345

the control of the ubiquitous CMV promoter. Ano5346

deficient mice were generated by a targeted 1793 bp 347

deletion in the Ano5 genomic loci, which was con- 348

firmed by PCR genotyping (Fig. 1B). Absence of 349

the 301 bp spanning exons 10–12 in the resulting 350

mRNA transcript was confirmed by RT-PCR analysis 351

and RNA sequencing (Fig. 1C–E). Congenic ANO5 352

deficient mice were backcrossed onto the C57Bl/6 353

genetic background for 10 generations with subse- 354

quent interbreeding. Homozygous Ano5-/- mice are 355

viable and fertile with no gross abnormalities or 356

increased mortality up to 1 year of age. 357

To assess the consequences of the targeted knock- 358

out of Ano5, we quantified Ano5 transcript levels in 359

skeletal muscle by quantitative RT-PCR (qRT-PCR) 360

analysis. This revealed low-levels of Ano5 transcript 361

(< 10 % of WT level) in various muscles (Fig. 1F). In 362

view of the role of ANO5 protein in regulating plasma 363

membrane (PM) and Sarco/Endoplasmic Reticulum 364

(SER) function [24, 48, 49], we used qRT-PCR 365

Fig. 1. Generation and genetic characterization of ANO5–/– mouse model. (A) Schematic showing the genetic modifications used to disrupt
the mouse Ano5 gene in the ANO5–/– mouse model. WT gene and the homologous recombination of the genome that led to the ANO5–/–
mice. (B) PCR analysis of the genomic region containing the deleted exonic regions shown in panel A. (C) Schematic of mRNAs resulting
from WT and Ano5-/- allele. Arrows indicate the region around which primers are designed for PCR amplification and sequencing. (D) Gel
image showing PCR amplified product of the marked region of Ano5 gene in panel C from mRNAs isolated from WT and ANO5–/– mice.
(E) Chromatogram showing the sequence of disrupted Ano5 allele in the ANO5–/– mouse. Plots showing qRT-PCR quantification of (F)
Ano5, (G) Ano6, and (H) Ano8, in 9-months-old male mouse muscles (quadriceps, LA (EDL+TA), gastrocnemius). Each dot on the plot
represents an individual muscle and the black bar indicates median of these values. p values are measured by unpaired Mann-Whitney t test
and indicated by ∗∗∗∗p < 0.0001.
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analysis to assess the expression of an anoctamin366

localized to the PM (ANO6), and one localized to367

the SR/PM (ANO8). Neither of these transcripts were368

found to be altered in their expression in the ANO5–/–369

muscles, suggesting no compensatory change in the370

levels of these anoctamins in ANO5 deficient skeletal371

muscles (Fig. 1G, H).372

Characterization of ANO5 deficient muscle373

Mutations leading to loss of ANO5 protein in374

patients result in damage, weakness, and wasting of375

muscle starting from late adulthood to middle age376

[8, 9, 50]. Given the relative age match of middle-377

aged human with 9–10 month old mice, we assessed378

mice at this age [51]. Analysis of the body and379

muscle weight in ANO5–/– mice compared to WT380

mice showed a significant drop in both body weight381

and weights of multiple muscles including quadri- 382

ceps, gastrocnemius, and TA (Fig. 2A–D). In view 383

of the muscle loss induced by ANO5 deficit, we 384

next examined if this is associated with changes 385

in muscle histology. Cross sections of quadriceps 386

were stained with H&E and independently immunos- 387

tained to mark the basement membrane (laminin) and 388

nuclei (DAPI) (Fig. 2E). These analyses identified 389

the presence of a significant increase in the num- 390

ber of centrally nucleated myofibers in the ANO5–/– 391

muscles when compared to WT, but there were no 392

signs of overt muscle inflammation (Fig. 2E, F). Fur- 393

ther, the increase in regenerated (centrally nucleated) 394

fibers occurred without any corresponding decrease 395

in myofiber cross-sectional area of ANO5–/– mus- 396

cles (Fig. 2E, G). Taken together, the data suggest a 397

lack of myofiber atrophy and/or a high rate of myof- 398

iber turnover, which would result in accumulation 399

Fig. 2. Effect of ANO5 deficit on muscle size and histopathology. Plots showing (A) body weight and weights of (B) Gastrocnemius, (C)
Quadriceps, and (D) TA muscles. Each dot represents an individual mouse/muscle. Images showing cross sections of quadriceps muscle
(E) stained with H&E (top) and for nuclei (DAPI) and basement membrane (Laminin immunostain) (bottom). Yellow arrows mark the
centrally nucleated fiber (CNF) and these were quantified to measure (F) proportion of CNFs and (G) myofiber cross-sectional areas. Each
dot represents value averaged from multiple cross sections per muscle, black line represents the median value of the distribution. Scale bars
are 50 �m (top) and 100 �m (bottom). p values are measured by unpaired Mann-Whitney t test and indicated by ∗p < 0.05; ∗∗p < 0.01; A–D
(n > 15), F, G (n = 5).
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of small caliber regenerated myofibers. As an inde-400

pendent assessment of inflammation and extracellular401

matrix (ECM) remodeling, we performed qRT-PCR402

analysis to assess the expression of different regu-403

lators of inflammation, including CD3G, interleukin404

1�, interleukin 6, CD11b, and miR-142. We observed405

no indication for altered inflammation in the Psoas406

(Fig. S1A) and other ANO5–/– muscles examined407

(Fig. S1B). Similar analysis of the expression of ECM408

modulating genes – TIMP-1, Perilipin, collagen, and409

micro RNAs – miR-21, miR-29a, showed lack of410

ANO5 did not detectably alter the genes responsi-411

ble for ECM remodeling in the Psoas (Figure S1C)412

and other muscles we examined (Figure S1D) in413

ANO5–/– mice.414

Next, we examined the expression of multiple415

myogenic regulators to assess the extent of ongoing416

regenerative myogenesis. The expression of the myo-417

genic indicators – embryonic myosin heavy chain418

(MYH8), myomaker (MYMK), embryonic myosin419

(MYH3), miR-01, and miR-31 were unaltered in the420

ANO5-deficient muscles (Figure S2A-C). Indepen-421

dently, to examine if the muscle of the 10-months422

old ANO5–/– mice undergo spontaneous myofiber423

damage and regeneration in vivo, we labeled spon-424

taneously regenerating myonuclei over a 1-week425

period to mark all nascent myonuclei produced dur-426

ing this period with the nucleotide analogue BrdU427

delivered through the drinking water [43, 44]. As428

can be expected, WT mice showed no spontaneous429

BrdU-labeled myonuclei over this period, and we430

found the same is true in case of the ANO5–/–431

mice (Figure S2D). Thus, quantification of myogenic432

gene expression and spontaneous in vivo regenerative433

myogenesis in ANO5–/– mice showed a low-level434

spontaneous myofiber regeneration, without chronic435

inflammation. This is unlike the severe muscular dys-436

trophies that are associated with extensive muscle437

regeneration, chronic inflammation, and excessive438

ECM remodeling [43, 44].439

Effect of ANO5 deficit on muscle strength and440

sarcolemmal ion channel activity441

With some of the previous ANO5 null models hav-442

ing reported underwhelming muscle histopathology443

and weakness [23, 39], we next examined muscle444

functional deficits in our ANO5–/– mouse model. For445

this we measured force production by grip strength446

analysis of the forelimb and hindlimb muscles of447

10-month-old ANO5–/– mice. Similar to the reduced448

muscle strength noted in LGMD2L patients, we449

found ANO5–/– mice demonstrated reduced grip 450

strength of both the forelimb (by 4.5 KgF/Kg) and 451

hindlimb (by 8.5 KgF/Kg), in comparison to WT con- 452

trols (Fig. 3A, B). To further characterize the muscle 453

force deficits in our ANO5–/– model, we evaluated in 454

vivo muscle torque generated in response to increas- 455

ing tetanic stimulations of the anterior crural muscles. 456

Here we elicited isometric contractions by subcu- 457

taneous stimulation of the peroneal nerve across a 458

range of frequencies from 20–200 Hz to generate 459

a force-frequency plot. The muscles of ANO5–/– 460

mice generated contractile force similar to the WT 461

mice at stimulation frequencies below 80 Hz, but at 462

tetanic stimulation frequencies (> 100 Hz) contractile 463

force of the ANO5–/– muscle was reduced (1.2 mN- 464

m) as compared to the WT muscle (1.6 mN-m) 465

(Fig. 3C). These results independently demonstrate 466

greater weakness of ANO5–/– limb muscle and 467

reduced contractile force of these muscle during 468

tetanic stimulation. 469

ANO5 protein has been suggested to operate as 470

a plasma membrane ion channel that can be acti- 471

vated by a rise in intracellular Ca2+[31, 34, 52]. 472

Thus, we examined if weakness of ANO5–/– mus- 473

cle is related to altered anion channel activity in the 474

myofiber sarcolemma. For this we recorded plasma 475

membrane currents elicited by 500 ms-duration depo- 476

larizing voltage pulses in isolated muscle fibers from 477

WT and ANO5–/– mice in the presence of an external 478

solution containing 149 mM or 9 mM Cl− and block- 479

ers of voltage-gated Na+ and K+ channels (Fig. 3D). 480

Depolarizations of increasing amplitudes in the pres- 481

ence of 149 mM Cl− elicited currents displaying an 482

early phase during which L-type voltage-gated Ca2+
483

currents activated, followed by a late phase during 484

which voltage-gated Ca2+ currents inactivated and 485

positive currents developed. These late phase posi- 486

tive currents were strongly reduced in the presence 487

of 9 mM Cl− in wild type and in ANO5-KO fibers 488

indicating that the positive current recorded in the 489

presence of the 149 mM Cl− solution was mostly car- 490

ried by Cl− ions. In each fiber, the remaining current 491

recorded in the presence of 9 mM Cl− was subtracted 492

from the current recorded in the presence of 149 mM 493

Cl− to extract the Cl− current. The amplitude of these 494

Cl− current differences, and of the currents recorded 495

in the presence of 149 mM Cl− were measured at 496

the end of voltage pulses in each fiber and plotted 497

as a function of voltage. The relationships between 498

mean current amplitudes and voltages obtained in 499

ANO5–/– myofibers were indistinguishable from the 500

WT myofibers (Fig. 3E). It is also noteworthy that 501
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Fig. 3. Muscle strength and chloride currents in ANO5 deficient muscle. Plots for (A) hindlimb and (B) forelimb grip strength of the mice
(each dot representing individual animal, black line represents the median value of the distribution.). (C) Plot showing the force-frequency
relationship for the TA of mice (n = 5; mean ± SD). Difference between genotypes along the frequencies was significant beyond 80Hz (Two-
way ANOVA). (D) Cl− currents were recorded in the same wild type (upper traces) and ANO5–/– myofibers (middle traces) in the presence
of either 149 mM or 9 mM external Cl−, in response to the voltage protocol shown in the lower traces. Voltage pulses were delivered every
5 s. (E) Relationships between the voltage and the mean end-pulse amplitude of the current measured in the presence of 149 mM Cl− and of
the current difference (current in 149 mM Cl− minus current in 9 mM Cl−) in 12 fibers from wild type and in 13 fibers from two ANO5-KO
mice. p values are measured by unpaired Mann-Whitney t test (A, B) or 2-way ANOVA (C) and indicated by ∗∗p < 0.01, n ≥ 5.

all fibers we tested contracted in response to voltage502

pulses given above –30 mV, allowing us to exclude503

the possibility that ANO5 did not activate due to504

absence of intracellular Ca2+ rise. Lack of detectable505

difference in depolarization evoked Cl− currents on506

myofiber sarcolemma between WT and ANO5–/–507

myofibers indicates that ANO5 does not function as508

a sarcolemmal Cl− channel in muscle fibers and that509

weakness of ANO5–/– myofibers cannot be attributed510

to altered sarcolemmal Cl− channel activity.511

In vivo role of ANO5 on muscle regeneration512

The ability to regulate myoblast fusion is another513

role attributed to ANO5 [34, 37]. In previous analy-514

sis of ANO5 deficient patient myoblasts we did not515

observe a myogenic deficit in vitro [35]. With the 516

availability of the ANO5–/– model, we next exam- 517

ined the role of ANO5 in regenerative myogenesis 518

in vivo. For this we used BrdU-labeling of activated 519

myogenic cells to monitor spontaneous regenera- 520

tive myogenesis [43, 44]. We used this approach 521

in combination with notexin-based, sterile injury to 522

investigate myogenic cell fusion after synchronized 523

muscle damage [42, 53]. Here, the quantification of 524

BrdU-labeled central nuclei in recently regenerated 525

myofibers provides a readout of satellite cell activa- 526

tion and myogenic cell fusion in response to in vivo 527

muscle injury. Following injury, BrdU was admin- 528

istered to the WT and the ANO5–/– mice for 7- or 529

14-days and the muscle cross-sections were scored 530

for presence of BrdU stained central-myonuclei to 531
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Fig. 4. Analysis of regenerative myogenesis in vivo. (A) Images of NTX-injured TA muscle cross-sections stained for regenerated myonuclei
(Brdu), nuclei (propidium iodide – PI) and basement membrane (Laminin) from WT and ANO5–/– mice at 7 days (upper panel) or 14 days
(lower panel) post single bout of injury. (B) Plot showing number of myofibers in individual muscle cross section that contained BrdU-labeled
myonuclei (C, D) Plot showing mean fiber cross-sectional area for (C) myofibers containing BrdU-labeled nuclei. (D) all myofibers in the
muscle cross-section. Scale bar - 100 �m. Data represents mean ± SD with each dot representing value from whole muscle cross-section from
individual mouse muscle. p values are measured by two-way ANOVA with Tukey’s multiple comparisons test and indicated by ∗∗p < 0.01,
∗∗∗p < 0.001, n = 4.

identify the newly regenerated myofibers, while532

all nuclei were stained with propidium iodide and533

myofiber boundary was marked with laminin stain-534

ing (Fig. 4A). Both WT and ANO5–/– muscle showed535

abundant BrdU labeled myofibers at 7-days and at536

14-days post injury (Fig. 4A). Quantification of the537

number of BrdU-labeled myofibers identified no dif-538

ference between the WT and ANO5–/– muscles at539

either 7-days or 14-days post injury (Fig. 4B). This540

indicated no detectable deficit in regenerative myo-541

genesis on account of in vivo myoblast fusion deficit542

in ANO5–/– mouse muscle. Previous studies identi-543

fied that the size of the newly regenerated myofibers544

was reduced at 30 days or 90 days post myotoxin545

injury [37]. We thus measured growth of newly546

regenerated myofibers at 7- and 14-days post injury.547

While average myofiber size at 7-days post injury548

was not different between the WT and ANO5–/– 549

mouse muscles, the average size of freshly regen- 550

erated (BrdU-labeled) ANO5–/– fibers was lower at 551

14-days post injury relative to control (Fig. 4C). This 552

difference was significant even when fibers that did 553

not contain a BrdU labeled nuclei were also included 554

in the quantification of the myofiber cross-sectional 555

area (Fig. 4D). These findings indicate that while the 556

lack of ANO5 does not compromise myoblast fusion 557

in vivo, it slows subsequent myofiber growth. 558

DISCUSSION 559

With the increasing identification of LGM 560

D2L/R12 muscular dystrophy patients [54–56], there 561

is a growing need to develop suitable animal mod- 562

els to help understand the in vivo role of ANO5 563



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

10 G. Thiruvengadam et al. / A Mouse Model for LGMD2L/R12

protein and test therapies which target this deficit.564

Our study has generated such a mouse model that565

mimics several clinical features of ANO5 deficit566

in LGMD2L/R12 ranging from muscle weakness,567

myofiber damage, and progressive muscle loss. We568

created this model by the deletion of exons 10–12569

of mouse Ano5 gene, which selectively prevented the570

expression of this gene without affecting the expres-571

sion of the other anoctamin family members tested.572

This is different from a previous ANO5 mouse model573

with a reading frameshift caused by exon 11–12 dele-574

tion that results in the loss of Ano5 transcript in bone575

and 71% reduction in muscle, leading to GDD-like576

bone defects [40]. Our observation of muscle pathol-577

ogy caused by the deletion of exons 10–12 aligns with578

muscle pathology caused by the deletion of exons 8–9579

in the mouse, and of exons 12–13 in the rabbit, but580

not in mice where exons 1, 2 are deleted [23, 37, 39,581

41].582

The mouse model we describe shows reduced583

total body mass and reduced muscle mass, recapit-584

ulating the muscle wasting and loss reported in the585

human patients [6, 8, 57]. These ANO5-deficient586

mouse muscles also showed reduced muscle strength587

reported in the patients [6, 8]. In addition to the588

reduced forelimb and hindlimb grip strength in589

ANO5–/– mice, the TA muscle of these mice also590

fatigue faster and show reduced isometric force at591

tetanic stimulation as compared to the WT mice. This592

latter response of ANO5–/– muscle is in addition593

to our recent observation that lengthening contrac-594

tion (LC) of the EDL muscle leads to greater muscle595

force drop in the ANO5–/– muscle as compared to596

WT muscle [24]. Poor recovery of ANO5–/– mus-597

cle from LC injury occurs due to impaired ability598

of these myofibers to undergo sarcolemmal repair599

– a deficit documented in patient muscle cells and600

another ANO5-deficient mouse model [24, 35, 37,601

38]. Poor sarcolemmal repair caused by ANO5 deficit602

could also contribute to muscle loss and to muscle603

weakness observed here in the ANO5–/– mice.604

Impaired myofiber sarcolemmal repair in the605

LGMD2L/R12 mouse model is shared with the606

LGMD2B/R2 mouse model, where mutations affect607

the dysferlin protein [27, 58]. Similar to dysferlin,608

ANO5 protein also translocate to the injured plasma609

membrane in myoblasts and in mature myofibers [27,610

35, 38, 59]. However, unlike the LGMD2B patients611

and mice, which show adipogenic muscle loss [42,612

57], we did not observe this as a feature of ANO5–/–613

muscle. This suggests that dysferlin and ANO5 pro-614

tein have different functions leading to different615

manifestation of disease symptoms. In support of this, 616

our previous work has shown that AAV-based expres- 617

sion of ANO5 in dysferlin-deficient mouse muscle 618

fails to rescue the sarcolemmal repair and other symp- 619

toms of the dysferlin-deficient mouse [60]. Indeed, 620

ANO5 and dysferlin have distinct roles in sarcolem- 621

mal repair. While dysferlin regulates membrane 622

repair through regulation of lysosome fusion, loss of 623

ANO5 compromises handling of cytosolic Ca2+ and 624

impairs membrane repair mediated by annexin, mito- 625

chondrial signaling, and phosphatidylserine lipids 626

[24, 35–38]. Dysferlin deficit alters the homeostasis 627

of another membrane lipid – sphingomyelin, and use 628

of the sphignomyelinase enzyme as well as improving 629

the stability of the dysferlinopathic myofiber mem- 630

brane improves repair and reduces muscle loss [45, 631

58]. Aside from membrane lipid alteration, dysferlin- 632

and ANO5-deficient muscles also show cellular Ca2+
633

dysregulation upon myofiber stress/damage [24, 61, 634

62]. 635

The above role of ANO5 in SR Ca2+ homeos- 636

tasis is due to its ability to function as an anion 637

channel at the ER membrane [24]. Cellular mod- 638

els with exogenous ANO5 overexpression leading 639

to the presence of ANO5 at the plasma membrane 640

enables Ca2+-activated ion channel activity [30, 31, 641

63]. However, our analysis of the chloride channel 642

activity at the plasma membrane of ANO5-deficient 643

mouse myofibers showed no difference in this activity 644

between ANO5–/– and WT myofibers. This could be 645

either due to the lack of anion channel activity of the 646

plasma membrane-localized ANO5, or that endoge- 647

nous ANO5 protein shows little (or no) expression 648

at the plasma membrane, resulting in no detectable 649

channel activity at the sarcolemma. Indeed, ANO5 650

localizes at the ER membrane and alters ER ion 651

homeostasis when absent [24, 26, 35]. Aside from ion 652

channel activity, ANO5 also possesses lipid scram- 653

blase activity, which has been implicated in regulation 654

of myoblast fusion in vitro [34, 37]. Our in vivo 655

analysis shows no significant spontaneous regener- 656

ative myogenesis in the adult ANO5–/– muscle and 657

no difference in the ability of the satellite cells in 658

the injured muscle to undergo fusion to regener- 659

ate the lost myofibers, which is in agreement with 660

the in vitro studies using patient-derived myoblasts 661

[35]. Interestingly, we observed that growth of the 662

freshly regenerated ANO5–/– myofibers is slower as 663

compared to the matched WT myofibers, recapitulat- 664

ing a similar observation in another ANO5-deficient 665

mouse model [37]. Thus, while ANO5 deficit in 666

mouse myoblast was found to impair their myogenic 667
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fusion in vitro, this role of ANO5 does not extend668

in vivo in mouse muscle nor to in vitro patient669

cell fusion. Additional studies will be needed to670

extend this analysis to other patient mutations and to671

determine the basis of such in vivo versus in vitro dif-672

ferences. Lack of myogenic fusion deficit in human673

myoblasts in vitro, and in mouse myofibers in vivo674

indicate that poor myogenesis may not be the basis675

for muscle loss in the LGMD2L/R12 patients, but676

the slower growth of nascent regenerated myofibers677

could contribute to the muscle weakness.678

In summary, the findings we report in this study679

establishes a new mouse model for LGMD2L/R12680

that manifests multiple muscle pathologies reported681

in ANO5 deficient muscular dystrophy patients.682

Description of these muscle pathologies and physio-683

logical deficits reported here and our earlier studies684

identifying a therapeutic approach to improve repair685

of ANO5–/– myofibers demonstrate the utility of this686

model to improve our understanding of the mech-687

anisms of ANO5 function in skeletal muscle and688

testing therapies to treat muscular dystrophy caused689

by its deficit.690
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