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Abstract

Motivation: The application of sophisticated machine
learning models, including deep learning, on omics data
enables the emergence of precision medicine. However,
their use in clinics is limited as they are not explain-
able. Domain knowledge can contribute to the produc-
tion of accurate and intelligible predictions. Therefore,
knowledge-based deep learning models appear to be a
promising solution.
Results: In this paper, we propose GraphGONet, a
new self-explaining neural network that encapsulates
the Gene Ontology in its hidden layers. Each neuron
in the layers represents a biological concept, combining
the gene expression profile of a patient and the informa-
tion from its neighbors. The experiments confirm that
our model not only performs as accurately as the state-
of-the-art (non-explainable ones) but also automatically
produces stable and intelligible explanations composed of
the most contributing biological concepts. In summary,
our tool is applicable by medical experts.

Introduction

The objective of precision medicine is to propose medi-
cal solutions at different stages of the health care path-
way (diagnosis, prognosis, treatment), considering the
unique low-scale characteristics of the patients known
as omic profiles. Among these characteristics, gene
expression profile (GE) (i.e., transcriptomic data) is an
indicator of the cellular state that can help to under-
stand the complexity of diseases such as cancers. The
analysis of this data can be achieved by automatic algo-
rithms such as machine learning (ML) algorithms (1).
These algorithms build classifiers to predict phenotypes
and identify GE signatures. Deep learning (DL), a suc-
cessful branch of ML especially for images and texts,
starts to be applied to gene expression data and shows
promising results (2; 3). It has the advantage to ex-
tract nonlinear relationships within the data through a
hierarchical architecture.

One of the most challenging problems that prevents
the development of ML in healthcare is the lack of
interpretability of those methods. In fact, most ML
algorithms, including DL approaches, are considered
as black-boxes. It means that the decisions of these
models are not explainable due to their complexity.

*Correspondence: victoria.bourgeais@universite-paris-saclay.fr

Making ML algorithms interpretable is one of the most
important current issues. Especially in the medical field,
final users (e.g., researchers, clinicians, patients) need to
understand the reasons why a phenotype has been pre-
dicted to make sure that it is based on reliable medical
features rather than on irrelevant artifacts. Regardless
of the model’s effectiveness, this will have a major effect
on their decisions and confidence towards the model. Fi-
nally, the model inspection may contribute to biological
discovery by revealing interesting signatures.

There exist two general approaches for interpret-
ing these black-boxes: post-hoc methods and self-
explaining models (4; 5). In case of post-hoc interpre-
tation, a probing method is built on top of a black-
box model to explain the predictions of it. Different
post-hoc methods have been developed in the literature.
Among them, surrogate models, which are explainable
methods, approximate black-box models. For example,
considering a given prediction, Local Interpretable Model-
Agnostic Explanations (LIME) can approximate locally
any black-box model by a linear method (6). Alterna-
tively, the self-explaining models are capable to produce
their own explanations to their predictions. They can
be considered as explainable as the following standard
models: decision trees, rules systems, and linear sparse
models. However, these three methods perform less
on high-dimensional complex data compared to more
sophisticated ML models such as deep learning. The
most interesting work on self-explaining DL models
attempts to imitate a linear model with a neural net-
work (7). The development of self-explaining models is
becoming popular as it can solve disadvantages from
dissociating model prediction from model explanation.
For example, using different post-hoc methods can lead
to different explanations, since the approximations can-
not reproduce perfectly the general behavior of the
original model (8). Therefore, a part of the ML com-
munity encourages the development of high-accurate
self-explaining models (8; 5). Furthermore, domain
knowledge is necessary to complete the obtained expla-
nations, the aim is at making them intelligible to final
users (9).

In precision medicine, the knowledge gathers dif-
ferent types, including pathways (KEGG (10), Reac-
tome (11)), functions (Gene Ontology (12)), networks of
interactions (STRING (13)), etc.
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As far as we know, the knowledge is mostly struc-
tured as graphs and can be integrated into knowledge-
based methods. The two mainstream methods contain
feedforward Neural Network (NN) and Graph Neural
Network (GNN). The former integrates the knowledge
as a constraint on its architecture, limiting the full ex-
pressiveness of the semantic of the knowledge. The
latter handles graph data, but it is not optimized to
deal with some particular types of graphs, such as the
directed acyclic graphs (DAGs). However, most ex-
isting works related to these two approaches are not
self-explaining.

We propose in this paper GraphGONet, a self-
explaining NN based on gene expression data encap-
sulating the Gene Ontology. The Gene Ontology (GO)
has the advantage to provide information about the bi-
ological processes implied by the genes. GraphGONet
is a new architecture combining the advantages of the
GNN for the GO knowledge integration and the feed-
forward NN for the propagation of gene expression and
the prediction. In addition to accurate predictions, our
model is able to produce automatic explanations as the
last layer of the NN contains the set of the most im-
portant neurons for the prediction and their associated
GO terms in such way that the outcome of a patient
is directly explained by this set. An enrichment test
is therefore no longer required, making GraphGONet
directly usable by clinicians.

The paper is organized as follows. First, we review
the literature on knowledge-based methods using gene
expression data for precision medicine. Then, the archi-
tecture and the learning procedure of GraphGONet are
presented. Finally, we assess the model effectiveness for
cancer detection on two publicly available datasets and
compare it with the state-of-the-art ML methods. Case
studies are provided to show how to get an explanation
of an outcome and an interpretation of the model.

Related works

In the context of DL for precision medicine from gene
expression data, two knowledge-based approaches have
been used to integrate knowledge into the model: the
feedforward NN with constrained architecture and the
Graph Neural Network. In both cases, the biological
concepts are associated to neurons, understandable by
the users.

The first approach, sometimes referred as Visible Neu-
ral Networks in the bioinformatics literature (14), is
based on feedforward NNs. The architecture of the
network (e.g., multilayer perceptron (MLP)) mimics the
architecture of the knowledge graph. Each neuron in
the hidden layers corresponds to a biological concept,
and each connection between two neurons to a rela-
tion within the graph. The propagation of the gene

expression through the network is limited to the con-
nections corresponding to the edges of the knowledge
graph. For example, Kang et al. use the gene regula-
tor graph to connect genes (of the input layer) to the
neurons (of a hidden layer) representing proteins or
compounds regulating the genes (15). In Deep GONet,
each hidden layer of a fully connected NN represents
a level of GO (16). The association neuron-GO term is
achieved during the training by penalizing the connec-
tions that do not correspond to edges in GO. In P-NET,
the knowledge from Reactome allows defining a net-
work with gene expression, methylation, mutation and
copy number input data propagated to three hidden
layers representing respectively genes, pathways and
biological processes (17).

There exist some limitations to this approach. The
integration of the knowledge is restricted by the type
of the model architecture. By definition, a feedforward
NN can represent only DAGs that do not correspond
to some knowledge graphs (KEGG, STRING. . . ). More-
over, the input genes are only connected with the first
hidden layer and not with the deeper layers. The con-
nections between non-successive layers are also omitted.
A part of the knowledge must therefore be truncated to
be integrated into the neural network.

The second approach consists in adapting existing
methods to deal directly with different types of graph
(directed or undirected). It can help to overcome the
above limitations. It only depends on the capacity of the
methods to handle this type of non-Euclidean data. A
recent type of DL model, i.e., Graph Neural Networks
(GNN), has been proposed to process graphs (18). The
objective of these models is to propagate recursively the
information contained in the nodes to their neighbor-
hood in order to solve the prediction task (19). They
can be utilized for node, edge, and graph prediction.
They have been already used in biological applications
to predict the label of molecules, atoms, or bonds (20).
To the best of our knowledge, few works have been
published for phenotype prediction on GE. Phenotype
prediction is a graph-level based problem where a pa-
tient is represented as a graph whose nodes contain
the information about the patient expression profile.
Most works use undirected gene interactions graphs
such as protein-protein interaction (PPI) networks from
STRING database (21) or co-expression graphs (22) to
define their input layer. The data are then propagated
to some graph convolutional and pooling layers, and
finally fully connected and output layers. These ap-
proaches are mainly concerned with the maximization
of the accuracy and outperforming the state-of-the-art.
They base their work on primer GNNs that are not self-
explaining and not easily interpretable (23; 24). Some
of them try to inspect the model in a post-analysis to
make it interpretable. They generally adapt the post-
hoc methods to deal with this type of NN, and perform
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enrichment statistical tests to identify the underlying
biology expressed at the disease and model level.

Our proposed method is based on a new architecture
that tackes advantages from GNNs and feedforward
NNs to deal with the limitations mentioned above. The
knowledge graph (here GO) is completely integrated
into a self-explaining model that produces accurate
predictions.

Methods

In the following, we present GraphGONet, a self-
explaining NN, whose input layer corresponds to the
gene expression profile of a patient, and its hidden
layers integrate knowledge from Gene Ontology. The
method is illustrated in Figure 1 and shows that the
signal starting from the gene input layer is propagated
sequentially through the GO layers. Then, the signal
passes by a selection layer, where it is concatenated and
masked to achieve the prediction task in the output
layer. A full description of the method is provided in
the following subsection.

The architecture of GraphGONet

Let (X, Y) be a training example, where X = [x1, ..., xd]
is the gene expression profile of a patient with d the
number of genes, and Y = {0, 1}C is the indicator of
its class that we want to predict with C the number
of classes. yc = 1 when the sample belongs to the
class c, and yc = 0 otherwise. Note that each sample
only belongs to one class. A neuron in the input layer
receives the expression of one gene. The input layer
is connected to a set of neurons organized in layers,
which mimics the architecture of GO. Each layer in the
hierarchy represents a GO level where the first hidden
layer corresponds to the most specific level (layer one
in Fig. 1) and the last hidden layer represents the root
(layer six in Fig. 1). Each neuron in these layers rep-
resents a GO term, and each connection between two
neurons represents a relation between two GO terms.
The connections are oriented from lower GO levels to
upper GO levels. Note that two neurons, representing
non-related GO terms, are not connected. There also
exist connections skipping some layers since GO terms
of non-adjacent levels can be linked (e.g., the relation be-
tween GO:0044283 and GO:0044281 in Fig. 1). Let G(v)
be the set of genes associated to a GO term correspond-
ing to a neuron v in GraphGONet and N (v) the set of
neurons corresponding to the children of the neuron v.
The gene expression is propagated to neurons through
connections representing relations between genes and
GO terms. The neuron v is only connected to the genes
in G(v) and is not connected to the other genes. The
activation value of a neuron hv is computed from both

the expression vector XG(v) restricted to the genes in
G(v) and the activation of its child neurons in N (v).
The activation hv of the neuron v is defined as follows:

hv =

 σ
(

wGhG(v) + wN hN (v)

)
if |N (v)| > 0

σ
(

hG(v)

)
if |N (v)| = 0

(1)
where wG, wN are parameters to learn, | · | is the car-
dinality, σ is the tanh activation function (tanh(x) =( exp(x)−exp(−x)

exp(x)+exp(−x)

)
). In our model, the choice of the tanh

function is more relevant than ReLU. The tanh function
will saturate the neurons selected in the next part of
the network (the selection layer), to values close to +1
or -1, making the interpretation of the prediction much
easier. hG(v) and hN (v) correspond to the embedding of
respectively the expression of the gene set G(v) and the
activation of the neurons set N (v), given by:

hN (v) =
1

|N (v)| ∑
u∈N (v)

hu (2)

hG(v) = WvXG(v) + bv (3)

where (Wv, bv) are parameters to be learned.
The activation of the neurons must be computed se-

quentially from the most specific neurons to the root (in
Fig. 1, from GO:0019319 to GO:0000152). This sequential
processing is important since the activation of a neuron
depends on the activation of its children. However, the
neurons having their neighborhood information avail-
able at the same time are processed simultaneously.
Note that the parameters (Wv, bv) of the connections
between a neuron and its associated genes are specific,
whereas the parameters (wG, wN ) propagating activa-
tions through the GO layers are common to all neurons.
Compared to the feedforward NN, this sharing of pa-
rameters, that is inspired from GNNs, reduces strongly
the number of parameters to learn.

The next part of the model is the selection of the most
activated neurons in absolute value. Their associated
GO terms will be used as the support of the explanation
of a prediction. The process consists of (1) concatenating
the activation of all neurons, except those of the input
layer, such as Hconcat = CONCAT(hv|∀v), (2) comput-
ing a mask M identifying the most activated neurons
Mv = 1 if v ∈ top(r), Mv = 0 otherwise, where r is
the selection ratio and top is a function returning the
indices of the ⌈nr⌉ neurons selected, (3) applying the
mask to select the neurons Hselect = Hconcat · M. Note
that r is a hyperparameter of the model to fine-tune
during the training phase.

The last layer returns the output, where each neuron
represents one of the C classes. It is a linear combina-
tion of the neurons in Hselect. The activation of the out-
put is computed from zc = ∑K

j=1 hselect,jwjc + bc, where
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Figure 1: Illustration of GraphGONet. The neurons in the input layer receive the signal from the genes. The dotted arrows correspond to
the connections between the genes and the GO terms represented by neurons in the hidden layers. The relations between GO terms are
represented by the plain arrows. The dashed arrows depict the concatenation of the activation of the neurons. The selection layer results
from the concatenation and masking operations.

(wjc, bc)’s are the parameters to learn in this last layer
and K the dimension of Hselect that corresponds to the
number of GO terms. The output activations are trans-
formed into probabilities using the softmax function:
oc =

exp(zc)

∑C
j=1 exp(zj)

. Note that for a binary classification

problem, the output layer may contain only one neuron
(C = 1) using a sigmoid function: o = 1

1−exp(z1)
. The

probability of the positive class will be returned.
The model is trained in end-to-end with the

usual gradient descent searching the parameters
Wv, bv, wG, wN , W, b to minimize the following cross-
entropy:

L =
C

∑
c=1

(−yc log oc) (4)

It is interesting to note that GraphGONet is composed
of a particular type of feedforward NN and a special
case of GNN. Indeed, in the feedforward NN, the input
layer can be connected to each hidden layer and all the
hidden layers are connected to the output layer through
a selection layer. The propagation of the signal through
the hidden layers, that represent GO, is inspired from
the propagation rules in GNNs.

Model interpretation

For a given patient, our model provides automatically
both a prediction and an explanation. The explanation
takes the form of a list of GO terms implied in the
final computation of the prediction, with their score
of importance. The number of GO terms in the list
depends on the selection ratio r. It is not the same set
of GO terms that will be selected for each patient. For

example, the four GO terms (GO:0044281, GO:0009058,
GO:0044283, GO:0016051) are chosen in Fig 1. The
importance of a GO term is dependent on the weight
of the connection between its associated neuron in the
selection layer and the output layer. Therefore, we use
an interpretation metric, the relevance score, computing
the proportion of the output signal passing through
the neurons in Hselect and their outcoming connections.
The relevance score Rc

j of a GO term j is calculated as
follows:

Rc
j = hselect,j × wjc (5)

Note that the GO terms not implied in the final predic-
tion will have their score set to 0 since their activation
is nullified by the mask.

Results

Datasets and choice of the GO layers

We apply our model on two large public gene expres-
sion datasets for cancer diagnosis. The first dataset is a
result of a cross-experimental study on heterogeneous
microarray data from around 40,000 Affymetrix HG-
U133Plus2 chip arrays (25). It is accessible on the Ar-
rayExpress database under the identifier E-MTAB-3732.
After quality control and normalization, the dataset
comprised 54,675 input probes for a total of 27,887 can-
cer and noncancer samples from seventeen different
types of tissue. 80% of the data form the training set
and 20% the test set respecting the original proportions
(66% cancer, 34% noncancer). 20% of the training set is
used as a validation set for the early stopping. The sec-
ond set of data comes from the RNA-Seq repository in
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The Cancer Genome Atlas (TCGA) plateform (26). It in-
cludes 5,982 cancer samples of 11 cancer types and 482
noncancer samples from various tissues for 56,602 in-
put genes. They are standardized and split in the same
way as the first dataset. The full description of the two
datasets can be found respectively in Supplementary
Tables S1 and S2.

GO is divided into three subontologies: biological
process (GO-BP), molecular function (GO-MF), and cel-
lular component (GO-CC). In these experiments, we
integrate only GO-BP in GraphGONet. The GO-BP was
chosen since it is the subontology often preferred by the
biologists for the explanation of the predictions. How-
ever, it is possible to replace it by GO-MF or GO-CC.
The details about the preprocessing of the graph can be
found in the Supplementary.

Sensitivity analysis

We conduct two experiments to assess the effectiveness
of GraphGONet over the state-of-the-art. GraphGONet
is trained in end-to-end manner using the optimizer
Adam with an adaptive learning rate of 0.001 and a
batch size of 64. Early stopping is employed with a
patience of 5 and a delta of 0.001. We perform on the
microarray dataset, a binary classification with a sig-
moid function in the output layer and on the pan-cancer
dataset, a multi-classification with a softmax function.
The accuracy reported in the figures is estimated from
the test set. All the experiments described below have
been executed on a GPU RTX 2080Ti using PyTorch
1.7.1 and PyTorch Geometric 1.6.3.

In the first experiment, we carry on an analysis of the
selection layer to measure its role in GraphGONet. This
layer is a key module to make the model self-explaining.
It extracts a subset of the most informative neurons and
their associated GO terms to predict the final outcome.
This subset can be in fact directly used as the support of
the explanation of the prediction. The size of this subset
is determined by the selection ratio r. As described
in the Methods section, the choice of the GO terms
realized by the selection layer in GraphGONet is based
on the absolute value of the activation of their associated
neurons. In this way, we evaluate the selection process
and the value of the hyperparameter r and compare
this process with a random selection. In addition, we
vary the value of r in a range from 0.00005 to 1, which
influences the number of selected GO terms. When
r = 1, all the GO terms are selected. Ten models are
learned for each value of r with different initialization
of the weights and bias.

The average and the standard deviation of the mod-
els’ accuracy are reported according to the value of r in
Figure 2a for the microarray dataset (resp. in Supple-
mentary Figure Sa for the TCGA dataset). We first see
that in general, random selection is less performant than

a)

b)

Figure 2: Accuracy of the models according to (a) the selection ratio
r and (b) the number of samples N on the microarray dataset.

"top" selection on the two datasets. On the microarray
dataset, performances with random selection start to
decrease gradually from 0.934 at r = 0.5 to reach an ac-
curacy of 0.661 at r = 0.00005, which corresponds to the
proportion of the majority class. In contrast with "top"
selection, performances increase from 0.940 to 0.945
with selection values from 1 to 0.05, and then, decrease
slightly from 0.945 to 0.921 along r between 0.05 and
0.0005. Applying "top" selection can help not only to in-
terpret, but also boost the performances. By keeping all
or half the neurons, performances are less good than a
selection with smaller ratios. Performances finally drop
to reach 0.755 at r = 0.00005. On the TCGA dataset,
similar tendencies can be observed, except that random
selection with ratios from 0.5 to 0.01 do not have much
impact on the performances. It can be explained by the
fact that TCGA data are more homogenous, and the
task is less complicated to solve. Finding signatures
proper to cancer types is easier than finding global
signatures for cancer from different tissue types. Best
performances are achieved with "top" selection, with a
ratio of 0.05 on the microarray dataset and 0.1 on the
TCGA dataset. It is interesting to note that the best per-
formances are obtained if the prediction is based only
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on a small proportion of the neurons (around 500 for
microarray and 1000 for TCGA). The corresponding GO
terms should therefore be related to the predicted phe-
notype. However, hundreds of GO terms are difficult
to ingest for a human to understand the explanation.
The smaller a subset of the selected GO terms is, the
more understandable the explanation will be. Unfortu-
nately, we see that after this optimal point, the model
accuracy decreases with r. The ratio controls therefore
a trade-off between performance and interpretability.
This hyperparameter is still adjustable according to the
user expectations.

In the next experiments, we consider models learned
from two trade-offs. The first one is the best performing
model with r = 0.01, i.e., around 100 GO terms are
selected. Note that r = 0.01 does not correspond exactly
to the ratio with the best average performances, but
the difference of performances between r = 0.01 and
r = 0.05 for microarray (resp. r = 0.1 for TCGA) is
negligible, as it is less than 0.005. In the second case,
we do a reasonable trade-off between performances
and interpretability choosing r = 0.001. The accuracy
decreases slightly from around 1.6% for a drop in the
number of selected GO terms to around 10.

In a second experiment, we compare one of the pro-
posed models (at r = 0.01) with state-of-the-art classical
ML algorithms. The ML algorithms computed with
the Python package scikit-learn are the following: de-
cision tree (Gini criterion), Random Forest (Gini crite-
rion, number of trees=100), SVM (linear kernel, C=1.0),
and MLP (three layers with respectively 1000, 500 and
200 neurons). The methods are trained on different
sizes of the training set in the intervals: 17847 (full size
of the training set) to 50 samples for the microarray
dataset, and from 4136 to 25 samples for the TCGA
dataset. As for the previous experiment, ten models are
learned for each sample size. Figure 2b (resp. Supple-
mentary Figure Sb) plots the average and the standard
deviation of the accuracy of each method according to
the number of training samples from the microarray
(resp. TCGA) dataset. We note that best accuracies are
achieved with the highest number of samples, and the
curves of DL methods and svm are mixed up for both
datasets. Besides, all performances of the models re-
duce with fewer training samples. Regardless of the size
of the training set, GraphGONet is as competitive as
the non-explainable ML and DL algorithms and clearly
outperforms the only comparable explainable method
(decision tree).

Biological analysis

In this section, we show how to propose relevant bio-
logical interpretations of the model GraphGONet and
its predictions. We provide two levels of interpretation:
the individual prediction level and the model level.

Interpretation of a patient outcome

In this subsection, we show how to provide an explana-
tion of the predicted outcome of one patient computed
by GraphGONet. The goal is to propose a predictive
and transparent tool to the final users (biologists, clin-
icians. . . ), which produces clear and comprehensible
knowledge-based explanations by highlighting the set
of the GO terms the most involved in the decision-
making with their quantitative contribution. In the
following, we use a selection ratio of 0.001 that leads to
a model using only eleven neurons and their associated
GO terms for a given prediction. We recall that the
prediction of each patient will be based on different
subsets of eleven GO terms. The relevance score of each
GO term is computed to distinguish among the subset
the most influential GO terms. In case of a softmax
output, the higher the score is, the more the GO term
has a positive impact on the final prediction. Regarding
a sigmoid output in microarray, the sign of the rele-
vance must be interpreted considering the cancer or
noncancer outcome. The GO terms, which contribute
to the cancer prediction, have a relevance score with
a positive sign. If the sign is negative, the GO terms
target the noncancer prediction.

In Figures 3a and 3b, we illustrate the application
of our tool on a patient, from the microarray test set,
correctly predicted cancer with a probability of 1 and a
patient correctly predicted noncancer with a probability
of 0.996. The eleven remained GO terms are reported
with their relevance score according to a descending
(ascending) order for the cancer (noncancer) patient.
In case of the cancer patient, all the GO terms have a
positive sign. Ten of the eleven GO terms are important
for the prediction, as they have a score close to the av-
erage relevance score of 0.92. Only the GO:0001916 is
less significant with a score of 0.14. Among the most
important GO terms, we can identify some that may
play a role in cancer. For example, GO:0006915 (top-
1st term) and GO:0043065 (top-5th term) are related to
apoptosis, which can highlight the immortality of tumor
cells (27). We can observe that the terms GO:0000122
and GO:0001916 are common to the explanations of the
cancer and noncancer patients. For the GO:0000122, the
relevance is positive for the cancer patient and negative
for the noncancer patient, but they have the same abso-
lute contribution of 0.86 for both predictions. The rank
of this GO term is slightly different between the two
samples: 7 in Fig. 3a and 4 in Fig. 3b, but it remains sig-
nificant for both predictions. It means that a GO term
can be important for the two outcomes. The positive
(negative) signal determines the prediction towards the
cancer (noncancer) outcome. In contrast, GO:0001916
has a positive sign in both cases. It belongs to the set
of the three terms in the explanation of the noncancer
patient, which do not encode for the noncancer predic-
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tion. Therefore, the relevance score helps to discern the
effective impact of the GO terms on the final prediction
and quantify the uncertainty of the prediction. Similar
results can be achieved on the TCGA dataset. A compar-
ative study of the explanations from a predicted BRCA
(Figure Sa) and LGG (Figure Sb) patient is provided in
the Supplementary.

Interpretation of the model

In this subsection, we give a global interpretation of the
model with a selection ratio of 0.01 based on both the
relevance score and the frequency of the GO terms. We
first propose to measure the similarity of the explana-
tions between the patients. We analyze the clustering
of the test samples predicted cancer according to their
relevance profiles. The relevance profile of a patient is
based on the relevance score of all neurons from the GO
layers. Relevance matrices of size (N, K), where N is
the number of samples and K the number of GO terms,
are collected on the test set of each dataset. A row cor-
responds to the relevance profile of a patient. We apply
hierarchical clustering on these matrices, using the aver-
age as the linkage criteria and the Euclidean distance as
the metric. The dendrogram on the microarray dataset
is plotted in Figure 4. The results on the TCGA dataset
can be found in Supplementary Figure S. The first col-
ored row below the dendrogram indicates the type of
tissue of each sample (see Table S3 for details). The
second row enables to distinguish the true prediction
(colored in blue) from the incorrect prediction (colored
in white). We can clearly discern clusters that group
patients from the same tissues, especially for bone nar-
row (colored in orange), blood (colored in red), and
lymph node (colored in cyan). Despite the fact that the
model isn’t designed to predict the cancer tissue type,
certain neurons and their corresponding GO terms are
able to extract cancer features exclusive to a particular
type of tissue. One explanation can be that our model
does not identify a unique cancer signature, but multi-
ple signatures associated to the different tissues. As a
deep learning model produces many splits of decision
boundaries, GraphGONet succeeds to identify some
signatures naturally correlated to tissue types. We can
finally note that the errors are spread across clusters.
However, a large part belongs to the cluster related to
the blood tissue, it could be interesting to investigate
the reasons why these samples are misclassified. On the
TCGA dataset, each cluster formed matches perfectly a
cancer type, due to the fact that the goal of the model
is to predict the cancer type. The model guided by the
biological knowledge is capable of projecting the data
into a latent space where the classes are well separable.

To evaluate the consistency of the biological signa-
tures, we train one hundred GraphGONet models with
the same selection ratio of 0.01. Similarly to the previ-

ous result, we apply the models to the test data and
compute a relevance matrix and an occurrence matrix.
The dimension of these matrices is (S, N, K) where S
corresponds to the number of models. The occurrence
matrix is a boolean matrix indicating if a GO term has
been selected or not by the selection layer. We can then
sum up across the model axis and the patient axis the
number of times a GO term is selected, resulting in a
vector of size K. Figures Sa and Sb in the Supplemen-
tary show respectively that 40.34% of the GO terms for
microarray and 62.79% for TCGA have never kept. On
the opposite, some GO terms are oftentimes selected
by the selection module of most models. They must
contain relevant biological information for the predic-
tions. It is the case of GO:0045944, the most frequent
GO term, that appears 403K times in the experiences on
microarray and 88,3K on TCGA.

To get an interpretation of the model considering
the classes, we filter these matrices according to the
label of each patient, and rank the GO terms based
on their occurrence. We count the positive or negative
sign of the relevance of the GO terms across the two
first dimensions. It will indicate if the GO term is used
towards the prediction in case of a positive sign or
against the prediction otherwise. In Figure 5, we show
an example of the top-10 most frequent GO terms on
the TCGA dataset for the cancer BRCA. We see that
these GO terms have an occurrence close to the upper
bound of 22100, (case they are selected for each patient
by all the models). For example, GO:0000122, the top-1
GO-BP term, comes out 15307. Moreover, this histogram
highlights that in most cases, the more frequent a GO
term is, the more the GO term is used to predict the
target label. We can identify particular cases through
the GO terms GO:0006614 and GO:0006958. They are
used in both directions, but the mean of their absolute
relevance reveals that they do not contribute as much in
the computation of the prediction contrary to the other
top GO terms. Comparable results can be generated for
each cancer type. We observe that some GO terms are
important for all the cancer types such as GO:0045944
whereas others are specific to some cancer types. On
the microarray dataset, the results in Supplementary
Figures Sa and Sb show again that GO terms can be
used for the two predictions, but the relevance score
will be positive for the prediction cancer and negative
for the noncancer one.

Discussion and Conclusion

The experiments show that GraphGONet can leverage
from the whole knowledge graph (and its semantic) to
accurately achieve the prediction task. We bring novelty
in the sequential propagation and the selection layer,
which permit to combine gene expression in an end-
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a) Sample 6987

b) Sample 2432

Figure 3: Explanation of (a) a cancer and (b) a noncancer prediction. A subset of eleven GO terms is reported with their relevance score
and their description. The color indicates towards which class a GO term influences the signal: blue for noncancer and pink for cancer.
The total relevance score is the sum of the relevance scores and the bias of the output class.

Figure 4: Dendrogram of the relevance matrix on the test cancer
samples from the microarray dataset. The first row displays the
type of tissue of each sample, whereas the second row indicates the
predicted class.

to-end learning and provide biological insights on the
decision-makings. The propagation in the GO layers
(Eq. 1) inspired by the propagation process from the
graph convolutional layers enables to consider all the
levels of GO and any types of connection between the
neurons (adjacent, skipping). With fully connected lay-
ers, we have to cut off parts of this information because
it cannot fit in memory due to a huge number of param-
eters to compute, besides, skipping connections are not
represented. On the microarray dataset, with Graph-
GONet, only 291,859 number of parameters must be
computed regardless of 315,766 with standard feedfor-
ward networks. The model has been validated on two

Figure 5: Top-10 most frequent GO terms sorted according to their
occurrence for the BRCA cancer type from TCGA. The colors indi-
cate the part of the occurrences having a negative (red) or positive
(green) relevance score. The maximal frequency that can be reached
corresponds to the number of BRCA samples times the number of
models, i.e., 22100.

datasets and can handle any knowledge represented by
a DAG.

The main interest of our method is to provide easily
an understandable explanation of the predictions in the
form of a small set of GO terms with their associated
relevance scores. However, the NNs from the state-of-
the-art generally use complex and uncertain post-hoc
methods to estimate the relevance of each gene. It
results in a large set of relevance values, making the
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explanations less understandable. The advantages of
GraphGONet are that (1) the explanation is based on a
subset of higher semantic concepts (GO terms instead of
genes) where the subset contains few GO terms thanks
to the selection layer, making the interpretation stable,
(2) the relevance score is easy to compute and represents
a good indicator to quantify the final contribution of
the GO terms in the subset and (3) it is as accurate as
explainable and different levels of explainability can be
proposed depending on the user’s expectations.

Specifically, for the first point, stability is one of a
prerequisite of trustworthy interpretability. The use of
post-hoc methods show that in some cases, a non self-
explaining NN trains on the same training set can lead
to different explanations due to different model param-
eters initialization (5). However, experiments show that
our self-explaining model is stable, since it is able to ex-
tract consistent biological patterns with different initial-
ization of the model parameters. It is worth to remind
that several works have shown that the identification of
gene signatures obtained from model interpretation or
feature selection methods are very unstable (28). Signa-
tures based on GO terms seem therefore more reliable.
As shown in the example of the prediction of a cancer
patient, these GO terms are relevant with the studied
phenotype. The reliability of the system can be veri-
fied as the existence of incoherence is detectable by our
model. Note that the set of genes the most important is
still computable through post-hoc methods.

For the second point, the relevance score of the GO
terms can be easily computed in our model (see Eq. 5).
In practice, they simply depend on the weights of their
associated neurons with the output layer and the sign
of the activation of the neurons. The ease comes from
the fact that a GO term, represented by one neuron, is
directly connected to the output layer, thanks to the GO
layers propagating the gene expression. Moreover, we
insist on the importance of the sign of the relevance
score to indicate in which way the most important GO
terms impact the final outcome towards the good or
wrong prediction. A change in the sign of the signal can
move the predicted outcome from one class to another.
It could be interesting to inspect the reasons of this
change and understand the meaning of the sign, for
example, if the GO term is excited or inhibited. We
can also use the following information to constraint
the model to find only the GO terms that go in the
correct direction. When there are some GO terms that
go towards the wrong prediction, it means that the
model is uncertain on the signal flowing through these
GO terms. We can quantify this uncertainty by dividing
their cumulated scores by the total relevance score to
get an estimated proportion.

Finally, for the third point, our sensitive analysis
shows that at the same time to be explainable, Graph-
GONet is as competitive as the other ML methods. As

discussed in the ablation study on the selection ratio,
the focus on interpretation rather than performance de-
pends on the final user’s requirements. An explanation
produced with one hundred GO terms can still be un-
derstandable for experts. It is possible to recreate the
sub-graph associated to a patient and identify the most
relevant parts. Depending on the final user, different
types of explanation can be provided: a doctor or a pa-
tient can be more interested in the model interpretation
of a patient whereas a biologist and a statistician in the
global interpretation of the model.

To sum up, our proposed model show several advan-
tages over the state-of-the-art and in addition, it fills the
following desire data mentioned in (9): exploitation of
the domain knowledge, validity (reproducibility), stabil-
ity, reliability, quantification of the uncertainty. It makes
it usable by the medical experts. We plan to include
other ontologies, such as the pathways, to enrich the
biological explanations and investigate the uncertainties
to rectify the model.

Availability of data and materials

The microarray dataset is accessible from the ArrayEx-
press database under the identifier E-MTAB-3732. The
TCGA datasets can be downloaded from the Genomic
Data Commons (GDC) data portal.
GraphGONet is freely available at https://forge.
ibisc.univ-evry.fr/vbourgeais/GraphGONet.git.
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