Skip to Main content Skip to Navigation
Journal articles

Assessment of deep learning and transfer learning for cancer prediction based on gene expression data

Abstract : Background: Machine learning is now a standard tool for cancer prediction based on gene expression data. However, deep learning is still new for this task, and there is no clear consensus about its performance and utility. Few experimental works have evaluated deep neural networks and compared them with state-of-the-art machine learning. Moreover, their conclusions are not consistent. Results: We extensively evaluate the deep learning approach on 22 cancer prediction tasks based on gene expression data. We measure the impact of the main hyper-parameters and compare the performances of neural networks with the state-of-the-art. We also investigate the effectiveness of several transfer learning schemes in different experimental setups. Conclusion: Based on our experimentations, we provide several recommendations to optimize the construction and training of a neural network model. We show that neural networks outperform the state-of-the-art methods only for very large training set size. For a small training set, we show that transfer learning is possible and may strongly improve the model performance in some cases.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03745997
Contributor : Victoria Bourgeais Connect in order to contact the contributor
Submitted on : Thursday, August 4, 2022 - 5:10:15 PM
Last modification on : Saturday, August 6, 2022 - 9:35:05 PM

Links full text

Identifiers

Citation

Blaise Hanczar, Victoria Bourgeais, Farida Zehraoui. Assessment of deep learning and transfer learning for cancer prediction based on gene expression data. BMC Bioinformatics, BioMed Central, 2022, 23 (1), pp.262. ⟨10.1186/s12859-022-04807-7⟩. ⟨hal-03745997⟩

Share

Metrics

Record views

20