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Abstract— Autonomous vehicles are complex systems that op-
erate in dynamic environments, where automated driving seeks
to control the coupled longitudinal and lateral vehicle dynamics
to follow a certain behaviour. Model predictive control is one
of the most promising tools for this type of application due
to its optimal performance and ability to handle input and
output constraints. This paper addresses autonomous driving
by introducing an adaptive linear parameter varying model
predictive controller (LPV-MPC), whose prediction model is
adapted online by a neural network. Moreover, the controller’s
cost function is optimized by an improved Genetic Algorithm.
The proposed controller is evaluated on a challenging track
subject to variable wind disturbances.

Index Terms— Autonomous Driving, LPV-Systems, Model Pre-
dictive Control, Neural Networks, Genetic Algorithms.

I. INTRODUCTION

Scientists and engineers in top automobile companies have
been striving to achieve full driving autonomy by replacing hu-
man drivers with automatic control systems. Consequently, au-
tonomous vehicles are emerging as a top technology aiming at
improving traffic safety and enhancing mobility. The transition
from manual to automatic driving is further accelerated by the
huge leap in artificial intelligence and information processing
technologies. Such a technological shift can also boost human
productivity, in the sense that time spent on driving can be
used for other productive tasks instead. Autonomous driving,
being a multidisciplinary field, involves sensing, perception,
decision making and planning. In addition, motion control is
among the most important tasks for achieving full autonomy.
The latter can be divided into longitudinal control in charge of
speed tracking and lateral control which handles the steering.

Literature research is divided into two categories; those who
address the longitudinal and lateral control separately, and
those who couple both tasks together. For instance, Xu et al.
developed an optimal preview controller for speed regulation
that integrates road slope, speed profile and vehicle dynamics
[1]. Kebbati er al. [2] addressed speed control by designing
a self-adaptive PID controller based on neural networks and
genetic algorithms. On the other hand, Han et al. [3] designed
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an adaptive neural network PID controller for path tracking.
They applied it to a second  order vehicle model whose
parameters were estimated by a forgetting factor least square
algorithm. LPV H, was developed for high-speed driving and
evasive maneuvers by Corno et al. [4]. The design was based
on the lateral error and look-ahead distance of the vehicle to
ensure better robustness and account for actuator nonlinearities
under low speeds. In [5], authors developed a model predictive
controller (MPC) for lateral control and used fuzzy inference
systems (FIS) to tune its weighting matrices. Guo et al. [6]
developed a path-tracking MPC controller that considers the
varying road conditions and small-angle assumptions as a form
of measurable disturbance and solved the control problem
using the differential evolution algorithm. Authors of [7]
worked on adaptive MPC for path tracking that optimizes
the controller tuning with an improved PSO algorithm [8].
Online controller adaptation was achieved by a lookup table
approach, but this technique cannot account for all possible
cases despite the good results that were obtained. However, the
same authors improved their approach in [9] by replacing the
lookup table method with neural networks and adaptive neuro-
fuzzy inference systems to generalize the adaptation beyond
the data in the lookup table. Although significant tracking
improvements were achieved, this approach still requires long
offline optimizations.

However, decoupling vehicle dynamics leads to inaccuracies
and reduces controller performance, coupled dynamics are
more suitable for highly dynamic maneuvers and fast driving
such as in racing applications. To address the mixed lateral and
longitudinal control, Alcala ef al. developed in [10] a solution
for trajectory tracking. Their control strategy was divided into
a cascade control scheme, with an internal layer for controlling
vehicle dynamics and an external one for vehicle kinematics.
The same authors developed in [11] a Takagi-Sugeno based
MPC (TS-MPC) for autonomous driving. They used a data-
driven approach to learn a Takagi-Sugeno representation of
the vehicle dynamics, which was used in MPC with Moving
Horizon Estimator (MHE) for achieving coupled longitudinal



and lateral control. Paper [12] proposed a coordinated lateral
and longitudinal control strategy using LPV-MPC for lateral
control with PSO-PID for speed regulation, the strategy in-
cludes exponential weight to the MPC cost function to improve
tracking performance. The use of nonlinear model predictive
control (NMPC) was proposed in [13] where the authors aimed
at exploring a parking lot autonomously and performing the
parking maneuver. Finally, paper [14] introduced an online
learning MPC controller for autonomous racing by learning
the model errors online using Gaussian process regression.
This paper contributes to the above mentioned literature
by developing an enhanced controller for the coupled lon-
gitudinal and lateral control. The contributions of this work
are threefold: First, an adaptive LPV-MPC is developed for
realizing autonomous driving. Second, an improved genetic
algorithm is proposed for tuning the weighting matrices of
the cost function to achieve optimal control actions. Third,
a deep neural network is developed and trained to learn the
tire lateral dynamics by predicting the cornering stiffness
coefficients from measurable parameters such as velocities and
accelerations. The paper is organized as follows: Section II
presents the modeling of the vehicle dynamics. Section III
details the design of the LPV-MPC controller, the controller
adaptation approach using machine learning and the controller
optimization via the improved GA version. Evaluation results
of the learning approach, optimization and control are pre-
sented and analyzed in section IV. Finally, section V provides
summarized conclusions and gives directions for future work.

II. VEHICLE MODELING

The commonly used bicycle dynamic model [15], [16] is
adopted in this paper as it is accurate for control design whilst
being simple for real-time implementation. In this model, the
two front wheels similar to the rear ones are lumped to form a
single track representation (see Fig. 1). The lateral dynamics
are governed by the tire lateral forces which are a function
of the slip angles. The full model accounts for longitudinal,
lateral and yaw dynamics (1) as well as tire forces (2) and
heading and lateral position errors (3):
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The parameters v, v, and w represent the linear longitu-
dinal and lateral velocities and yaw rate in the body frame.
Fy (s, are the tire lateral forces of the front and rear wheels
respectively. Fy is the total drag force where Cy; and A
represent the drag coefficient and the vehicle cross sectional
area. y. and 6. represent the lateral position error and the
heading error where k is the road curvature. I and m are the
inertia and the mass of the vehicle and [y, are the distances

Fig. 1: Bicycle dynamic model with tracking error.

between the vehicle centre of gravity and the front and rear
wheel axles, respectively. o, and 0 are the acceleration and
steering controls and i and g represent the friction coefficient
and the gravity pull. Finally, C(s,) represent the respective
front and rear tire cornering stiffness coefficients, and af,r)
are the slip angles of the front and rear wheels with ¢ being
an additional term to avoid singularities in the model, these
are respectively given by:

_ —1/ v lyw
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a, = —tan~! (vwie + U:ie)

The full model can be summarized as a non-linear function
of the state vector (z), input vector (u) and the road curvature
(k) as follows:

&= f(z,u, k) (%)

where z = [v; vy W Ye 0.]7 and u = [§ )T

III. CONTROLLER DESIGN

The control task is achieved based on LPV-MPC approach
[15], where the model presented in Section II is reformulated
in an LPV form which allows to capture model nonlinearities
as in the nonlinear model without the high computation
burden. The model is then transformed into a state space rep-
resentation where the state and control matrices are functions
that depend on a scheduling vector of varying parameters. Em-
bedding linear varying parameters into these matrices allows to
capture the nonlinearities of the full model that provides a sim-
ple but accurate model for control design. Generally speaking,
LPV systems are a class of linear systems whose parameters
are functions of external or internal scheduling signals. The
LPV state space formulation of the system is given by (6)
based on the scheduling vector ¢ = [§ v, vy e ye k|7 .

&= A@)z + B(t)u ©)

According to [15], [17], the state matrix A(t)) and control
matrix B(¢) can be derived as the following:
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Model predictive control uses the plant model to predict its
behaviour over a prediction horizon N,. Then, it generates
an optimal control sequence by solving a constrained convex
optimization problem. The receding horizon principle is then
applied and only the first term of the optimal control sequence
is used. The LPV model, discretized with T sampling time,
is used as the MPC prediction model. Hence, at each iteration
the scheduling vector is used to instantiate the LPV model.
The parameters of the scheduling vector can be obtained
from sensors, planners or previous MPC predictions. In this
regard, the MPC problem can be formulated as the following
constrained quadratic optimization:

N,—1
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k i—0

AukHRAukH) + foer QTr+n,
s.t:
Thtitl = Trai + AWpri)Trri + B(Wgii)ugsidt
Ugti = Upaio1 + AUpaq
Atpin < Aug < Alpag
Umin < Uk < Umag

Tmin < Tk < Tmaz
)

The terms x, v and N, are the previously defined state
vector, control vector and prediction horizon. Q € R®*?
and R € R?*? are semi-positive definite weighting matrices
that penalise the states and the control effort. ry4; is the
reference vector and the terms [wmin, Umaz]s [AUmin, Almaz]
and [Zmin, Tmas] are the upper and lower bounds on the
control actions, control increments and states, respectively.

A. Controller adaptation with neural network

The majority of research in the literature consider a lin-
earized tire model, where the relation between tire force and
slip angle is governed by a constant called cornering stiffness
coefficient. However, this is only valid for relatively small
slip angles and not during fast and challenging maneuvers. To
remedy this, we use machine learning to predict the cornering
stiffness coefficient online using measurable parameters from
the vehicle dynamics. We assume these parameters (namely,
the longitudinal (v;) and lateral (v,) velocities, the steering
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Fig. 2: Adaptive LPV-MPC approach.
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angle (J), the acceleration (c,) and the yaw rate (w)) are
enough to capture the tire dynamics. Using this approach (see
Fig. 2), the prediction model of the LPV-MPC is adapted
online to improve the prediction capability and precision.

B. Controller tuning with improved GA Algorithm

Manually tuning the MPC is time consuming and may not
result in optimal performance. Thus, to optimize the designed
LPV-MPC, we propose an improved Genetic Algorithm (GA)
to tune the weighting matrices of the quadratic cost function
by minimizing the MPC tracking root mean squared error
(RMSE) as a fitness function. GAs are a global optimization
technique based on biological evolution theory. They can
find the optimum of an objective function even if it is not
continuous or differentiable [18]. The algorithm initializes
a population set of possible encoded solutions named chro-
mosomes which are genetically enhanced over iterations and
evaluated by a fitness function to determine their optimality.
The GA operations are the selection, the crossover and the
mutation processes, which control the search capability and the
quality of the solutions. These operations consist of different
functions which influence the algorithm at different degrees
[18]. The selection process chooses the best chromosomes
to be enhanced by the crossover and mutation operations.
The crossover seeks to produce high-quality solutions by
mixing genetic data, while mutation introduces new genes to
complement the crossover as illustrated in Fig. 3.

To improve the GA performance, researchers have es-
sentially tried to enhance the genetic operations. For in-
stance, the most common selection operations are the roulette
wheel (RWS) and tournament (TS) [18], [19]. Similarly,
crossover versions include single/multi-point, uniform and
shuffle crossover, while in mutation, one finds swap, inversion
and random resetting. Details about these methods and GA
can be found in [20]. Rather than improving the operators
themselves, we combine RWS and TS selection operations
to improve the selection of potential genes which is a critical

Parents I‘IIOI“ l1 l 0}
Crossover

Children (JOTOIATA] 1]0o[1)  (oTalal1[o[1[1]o]
New lMutation
1Jolol[1[1]1[A]0 (ofol1[1]o[1[1[1)

population

Fig. 3: Genetic operations



phase of the GA. In particular, RWS strategy provides a higher
chance for the good genes to be selected, which enhances
exploitation and accelerates the convergence of the algorithm.
However, RWS is mainly based on the fitness value, which
makes it prone to premature convergence by possibly selecting
the same dominant genes every time. On the other hand, the
TS method allows to control the selection pressure. A smaller
tournament size ensures more chances for weak genes to be
selected unlike RWS. This feature retains diversity of the
search space and increases the possibility of converging to a
global optimum at the expense of slower convergence. In this
paper, both methods are used with random percentages at each
iteration to increase both convergence speed and optimality
by combining the advantages of both methods. Furthermore,
uniform crossover has been used with mutation based on
Gaussian distribution (see Algorithm 1).

Algorithm 1 Proposed Genetic Algorithm

Require: Genpaz, Np
Pop <~ N, Parents
while Generation < Gen,q, do

Child < emptyPop > Create child population
while Child < full do
RWS «+ %,
TS + %t
if %, > %; then
Parentl <+ RW S(Pop)
Parent2 <+ RW S(Pop)
else
Parentl < T'S(Pop)
Parent2 + T'S(Pop)
end if
Childl, 2 <+ UCrossover(Parentl, Parent2)
> Perform Uniform Crossover
Childl, 2 < GMutation(Childl, Child2)
> Perform Mutation
Fitness < Evaluate(Childl, Child2)
> Evaluate new offsprings
Of fspring < Childl, Child2
end while
Pop + Of fspring
end while
Solution < Best fitness

> Generations, Population size
> Random population

> Generate RWS percentage

> RWS Selection

> TS Selection

> Replace Population

> Save best solution

IV. RESULTS AND DISCUSSION

For testing the proposed approach, a Renault Zoe vehicle is
used. The behaviour of this vehicle is simulated in Matlab
using a high fidelity nonlinear dynamic model [15], with
the Pacejka formula for the lateral tire forces [21]. Model
parameters are presented in Table II.

A. Learning and optimization results

As discussed in Section III-A, the cornering stiffness co-
efficient is learned from data. Carsim is used to perform
multiple driving scenarios and collect data for training. Then,
a deep neural network consisting of an input layer with 5
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neurons, four hidden layers with 16, 28, 16 and 9 hidden
neurons respectively, and an output layer with two neurons
corresponding to the rear and front wheel cornering stiffness
coefficients. The Sigmoid function is used for activation in all
the layers except the output layer which uses Identity since
this is a regression task. The model is built using Keras-
Tensorflow and trained for 2500 epochs with a batch-size of
64. The whole data-set consists of 10752 data-points which
were split into 75% for training and 25% for validation. Adam
was chosen as the optimizer with a learning rate of 5x107%.
The training curve of the neural network in Fig. 4 shows that
the model is able to learn the data without over-fitting. The
final validation loss value is minimized to 0.226, while the
training loss reached 0.196. The evaluation of the model on
the training and the test data-sets achieved an R2 score of 0.88
and 0.78, respectively. The proposed GA algorithm is tested
on a 5D sphere function (f(z) = Z?:l 2?) as a benchmark
test [22], and the resulting performance over 100 iterations is
compared to GA with either RWS or TS methods separately.
Fig. 6 shows that the improved version is indeed faster and
able to find more optimal solutions, reaching a cost value of
25.029 compared to 27.725 and 28.722 for the GA with RWS
and TS respectively. Table I lists the parameters used in the
GA algorithm for optimizing the weighting matrices of the
LPV-MPC cost function. The fitness function is chosen as
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Fig. 6: Performance of the improved GA.

the root mean squared error (RMSE) for longitudinal velocity,
heading and lateral position tracking. The GA optimization
achieved minimum RMSE scores of 0.0217, 0.0465 and 0.101
for the position, heading and velocity tracking, respectively.
The resulting weighting matrices are as follows:

Q = diag(0.008, 0.0007, 0.0133, 3, 0.021, 5)7T,

R = diag(0.0337, 0.0117)T.

B. Control results

The LPV-MPC is coded in Yalmip and solved with
Gurobi, and its corresponding parameters are listed in Table
II. The algorithm runs at 95Hz on a legion 5 pro with 3.2Ghz
Ryzen7 5800H and 32¢b of RAM. The proposed controller is
evaluated on a challenging trajectory and speed profile subject
to wind disturbances varying between 25 and 50 m/s (see Fig.
7). Furthermore, it is compared to another LPV-MPC based
on the linear bicycle model [12]. The latter, denoted LMPC, is
used in a coordinated approach with an optimised PSO-PID to
address longitudinal and lateral dynamics which were tested
for the same trajectory, speed profile and wind disturbance.
Such comparison shows the significance of accurate modelling
and of the coupling of lateral and longitudinal dynamics for
controller design. Fig. 7 shows the velocity profile varying
between 5 and 21 m/s with challenging accelerations. The
LPV-MPC outperforms the PSO-PID and is more accurate in
speed tracking where its MSE is evaluated at 0.0476 compared
to 0.187 for the PSO-PID whose parameters were already
optimized. The better performance of LPV-MPC is achieved
thanks to the dynamic coupling and the predictive feature
of MPC which compensates for tracking errors beforehand
unlike PID control which merely reacts to observed errors.
In addition, PSO-PID is more aggressive as it cannot handle
constraints. On the other hand, the results in Fig. 8 show that
the proposed LPV-MPC is indeed superior to LMPC in terms
of lateral tracking accuracy. In fact, its MSE score is as low as

TABLE I: GA parameters
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Fig. 7: Wind velocity and Velocity tracking performance.
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Fig. 8: Trajectory tracking.

0.02 compared 0.32 for LMPC which means the LPV-MPC
tracking is almost ideal. The zoomed regions of the figure
illustrate the significant difference in tracking accuracy con-
sidering the scale of the figure. This is partly due to the more
accurate model used in LPV-MPC, in addition to the online
adaptation of the cornering stiffness coefficients. Furthermore,
unlike LMPC whose parameters were tuned iteratively, the
parameters of LPV-MPC are well optimized by the proposed
GA algorithm. Fig. 9 shows the steering and acceleration
controls, and the lateral velocity of the vehicle. The tracking
errors for longitudinal velocity, heading and lateral position
are respectively shown in Fig. 10. The maximum velocity
tracking error does not exceed 0.087 m/s, while the heading
and position tracking errors are kept below 11° and 8 cm,
which corresponds to the challenging section of the trajectory.
Finally, Fig. 11 presents the computation time required by the
LPV-MPC for solving the optimization problem. The mean
computation time is evaluated at (0.0113 s) which is very
suitable for real-time applications.

TABLE II: MPC and model parameters

Parameter Name Value
Gen Number of generations 15
Np Size of population 20
Op Percentage of offsprings 0.8

B Selection pressure 0.75

o Mutation rate 0.3

o Mutation variance 0.15

Parameter Value Parameter Value
m 1575 (kg) Cy 0.29
I, 2875 (kg.m?) A 1.6 (m?)
Ly 1.2 (m) Yemaz/min ~ 0-3 (M)
Iy 1.6 (m) Umaz /min +5 (rad)
p 1.225 (kgm3)  Atpag/min  *15 (rad)
0.2 Np 10
g 9.81 (m/s?) Ts 0.033 s
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V. CONCLUSIONS

This paper addressed the control task in autonomous driving
by developing an adaptive LPV-MPC controller ‘that han-
dles both lateral and longitudinal dynamics. A data-driven
approach based on Machine Learning has been proposed to
predict the tire cornering stiffness coefficients online from
measurable parameters only, and then adapt the LPV-MPC
prediction model for more accurate predictions. Furthermore,
an improved Genetic Algorithm has been proposed to opti-
mize the cost function of the LPV-MPC controller by tuning
its weighting matrices. The proposed control strategy has
been tested on a challenging track against another variant
of LPV-MPC. The obtained results proved that the proposed
controller has superior performance and ensures high speed
and trajectory tracking accuracy. Future research shall address
the development of an online learning-based LPV-MPC for
autonomous racing.
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