A. Albini, Tumor microenvironment, a dangerous society leading to cancer metastasis. From mechanisms to therapy and prevention, Cancer and Metastasis Reviews, vol.27, issue.1, pp.3-4, 2008.
DOI : 10.1007/s10555-007-9102-y

R. Adams and L. Bischof, Seeded region growing, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, issue.6, pp.641-647, 1994.
DOI : 10.1109/34.295913

P. S. Adiga and B. B. Chaudhuri, An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images, Pattern Recognition, vol.34, issue.7, pp.1449-1458, 2001.
DOI : 10.1016/S0031-3203(00)00076-5

O. Al-kofahi, R. J. Radke, B. Roysam, and G. Banker, Object-level analysis of changes in biomedical image sequences: Application to automated inspection of neurons in culture, IEEE Transactions on Biomedical Engineering, vol.53, issue.6, 2006.

P. A. Arbelaez and L. D. Cohen, A Metric Approach to Vector-Valued Image Segmentation, International Journal of Computer Vision, vol.133, issue.2, pp.119-126, 2006.
DOI : 10.1007/s11263-006-6857-5

G. Aubert, J. Aujol, and J. F. , Modeling Very Oscillating Signals. Application to Image Processing, Applied Mathematics and Optimization, vol.51, issue.2, 2003.
DOI : 10.1007/s00245-004-0812-z

URL : https://hal.archives-ouvertes.fr/hal-00202000

G. Ball and D. Hall, ISODATA, an iterative method of multivariate analysis and pattern classification, IFIPS Congress, 1965.

P. Bamford and B. C. Lovell, Method for accurate unsupervised cell nucleus segmentation, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001.
DOI : 10.1109/IEMBS.2001.1017341

L. Beaurepaire, J. Ogier, and K. Chehdi, Identification aveugle d'images dégradées par un bruit additif ou multiplicatif, GRETSI, 1997.

M. Beil, T. Irinopoulou, J. Vassy, and G. Wolf, A dual approach to structural texture analysis in microscopic cell images, Computer Methods and Programs in Biomedicine, vol.48, issue.3, pp.211-219, 1995.
DOI : 10.1016/0169-2607(96)81866-9

J. Belien and H. Van-ginkel, Confocal DNA cytometry: A contour-based segmentation algorithm for automated three-dimensional image segmentation, Cytometry, vol.198, issue.1, pp.12-21, 2002.
DOI : 10.1002/cyto.10138

E. Bengtsson, Fifty years of attempts to automate screening for cervical cancer, Medical imaging technology, vol.17, issue.3, pp.203-210, 1999.

K. A. Beningo, M. Dembo, and W. Y. , Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors, Proc. Natl. Acad. Sci, 2004.
DOI : 10.1073/pnas.0405747102

R. Berry, Working in the digital darkroom, Astronomy, 1994.

M. R. Berthold and J. Diamond, Boosting the performance of RBF networks with dynamic decay adjustment, Advances in Neural Information Processing Systems, pp.521-528, 1995.

G. Berx, E. Raspé, G. Christofori, J. P. Thiery, and J. P. Sleeman, Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer, Clinical & Experimental Metastasis, vol.8, issue.Suppl 1, pp.587-597, 2007.
DOI : 10.1007/s10585-007-9114-6

S. Beucher, Segmentation d'images et morphologie mathématique, 1990.

S. Beucher, Watershed, Hierarchical Segmentation and Waterfall Algorithm, Mathematical Morphology and its Applications to Image Processing, pp.69-76, 1994.
DOI : 10.1007/978-94-011-1040-2_10

S. Beucher and C. Lantuéjoul, Use of watersheds in contour detection, International Workshop on Image Processing, pp.2-3, 1979.

S. Beucher and C. De-morphologie-mathmatique, The watershed transformation applied to image segmentation, 1991.

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, 1981.
DOI : 10.1007/978-1-4757-0450-1

J. Biesiada and W. Duch, Feature Selection for High-Dimensional Data ??? A Pearson Redundancy Based Filter, Computer Recognition Systems, pp.242-249, 2008.
DOI : 10.1007/978-3-540-75175-5_30

C. Birchmeier and W. Birchmeier, Met, metastasis, motility and more, Nature Reviews Molecular Cell Biology, vol.4, issue.12, pp.915-940, 2003.
DOI : 10.1038/nrm1261

A. Bleau and L. J. Leon, Watershed-Based Segmentation and Region Merging, Computer Vision and Image Understanding, vol.77, issue.3, pp.317-370, 2000.
DOI : 10.1006/cviu.1999.0822

A. Bleau and L. J. Léon, Watershed-Based Segmentation and Region Merging, Computer Vision and Image Understanding, vol.77, issue.3, pp.317-370, 2000.
DOI : 10.1006/cviu.1999.0822

M. V. Boland, M. K. Markey, and R. F. Murphy, Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images, Cytometry, vol.33, issue.3, pp.366-375, 1998.
DOI : 10.1002/(SICI)1097-0320(19981101)33:3<366::AID-CYTO12>3.0.CO;2-R

A. C. Bovik, M. Clark, and W. S. Geisler, Multichannel texture analysis using localized spatial filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.1, pp.55-73, 1990.
DOI : 10.1109/34.41384

R. Boyle, V. Hlavac, and M. Sonka, Image processing, analysis, and machine vision, 1993.

G. Cai, L. J. Shapiro, S. S. , and B. D. , Evaluation of endothelial cell migration with a novel in vitro assay system, Methods in Cell Science, vol.22, issue.2/3, pp.107-114, 2000.
DOI : 10.1023/A:1009864613566

J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, issue.6, pp.679-698, 1986.

A. Cartier-michaud, Etude de l'influence du PAI-1 matriciel sur la régulation de la transition Mésenchymo-Amibo¨?deAmibo¨?de des cellules cancéreuses, 2010.

R. Castelló, J. M. Landete, F. España, C. Vázquez, C. Fuster et al., Expression of plasminogen activator inhibitors type 1 and type 3 and urokinase plasminogen activator protein and mRNA in breast cancer, Thrombosis Research, vol.120, issue.5, pp.753-762, 2007.
DOI : 10.1016/j.thromres.2006.12.016

G. J. Chaitin-chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, vol.10, issue.2, pp.266-277, 2001.
DOI : 10.1109/83.902291

A. Chauviere, L. Preziosi, and L. Byrne, A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism. Mathematical medicine and biology : a journal of the IMA, 2009.

K. Chehdi and M. Sabri, A new approach to identify the nature of the noise affecting an image, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.285-288, 1992.
DOI : 10.1109/ICASSP.1992.226195

I. Cheikhouhou, K. Djemal, and H. Maaref, Mass Description for Breast Cancer Recognition, Image and Signal Processing, 4th International Conference Proceedings, pp.576-584, 2010.
DOI : 10.1007/978-3-642-13681-8_67

S. Y. Chien, Y. W. Huang, and L. G. Chen, Predictive watershed: a fast watershed algorithm for video segmentation, IEEE Transactions on Circuits and Systems for Video Technology, vol.13, issue.5, pp.453-461, 2003.
DOI : 10.1109/TCSVT.2003.811605

P. L. Correia and F. Pereira, Classification of Video Segmentation Application Scenarios, IEEE Transactions on Circuits and Systems for Video Technology, vol.14, issue.5, pp.735-741, 2004.
DOI : 10.1109/TCSVT.2004.826778

D. Anoraganingrum, Cell segmentation with median filter and mathematical morphology operation, Proceedings 10th International Conference on Image Analysis and Processing, pp.1043-1046, 1999.
DOI : 10.1109/ICIAP.1999.797734

J. G. Daugman, Two-dimensional spectral analysis of cortical receptive field profiles, Vision Research, vol.20, issue.10, pp.847-856, 1980.
DOI : 10.1016/0042-6989(80)90065-6

J. G. Daugman, Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.36, issue.7, pp.1169-1179, 1988.
DOI : 10.1109/29.1644

L. Davidson and R. Keller, Basics of a light microscopy imaging system and its application in biology. Methods in Cellular Imaging, 2001.

J. Boutet-de-monvel, J. E. Scarfone, L. Calvez, and S. , Image-Adaptive Deconvolution for Three-Dimensional Deep Biological Imaging, Biophysical Journal, vol.85, issue.6, pp.3991-4001, 2003.
DOI : 10.1016/S0006-3495(03)74813-9

C. Ortiz-de-solorzano and E. Garcia-rodriguez, Segmentation of confocal microscope images of cell nuclei in thick tissue sections, Journal of Microscopy, vol.193, issue.3, pp.212-226, 1999.
DOI : 10.1046/j.1365-2818.1999.00463.x

O. Debeir, P. Van-ham, R. Kiss, and C. Decaestecker, Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes, IEEE Transactions on Medical Imaging, vol.24, issue.6, pp.697-711, 2005.
DOI : 10.1109/TMI.2005.846851

C. Decaestecker, O. Debeir, P. Van-ham, and R. Kiss, Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration, Medicinal Research Reviews, vol.102, issue.2, pp.149-76, 2007.
DOI : 10.1002/med.20078

R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, International Journal of Computer Vision, vol.1, issue.2, pp.167-187, 1987.
DOI : 10.1007/BF00123164

S. Derivaux, S. Lefèvre, C. Wemmert, and J. Korczak, Watershed Segmentation of Remotely Sensed Images Based on a Supervised Fuzzy Pixel Classification, 2006 IEEE International Symposium on Geoscience and Remote Sensing, 2006.
DOI : 10.1109/IGARSS.2006.951

URL : https://hal.archives-ouvertes.fr/hal-00516090

C. Diruberto, A. Dempster, S. Khan, and J. B. , Analysis of infected blood cell images using morphological operators, Image and Vision Computing, vol.20, issue.2, pp.133-146, 2002.
DOI : 10.1016/S0262-8856(01)00092-0

W. Duch and R. Adamczak, A hybrid method for extraction of logical rules from data, 1998.

J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, vol.3, issue.3, pp.32-57, 1973.
DOI : 10.1080/01969727308546046

S. Eom, K. S. Shin, V. Ahn, and B. , Leukocyte Segmentation in Blood Smear Images Using Region-Based Active Contours, Advanced Concepts for Intelligent Vision Systems, pp.867-876, 2006.
DOI : 10.1007/11864349_79

A. N. Esgiar, R. N. Gorgui-naguib, and B. N. Sharif, Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa, IEEE Transactions on Information Technology in Biomedicine, vol.2, issue.3, pp.197-203, 1998.
DOI : 10.1109/4233.735785

. Ambriz-colin, Detection of Biological Cells in Phase-Contrast Microscopy Images, 2006 Fifth Mexican International Conference on Artificial Intelligence, pp.68-77, 2006.
DOI : 10.1109/MICAI.2006.12

M. P. Look, Pooled Analysis of Prognostic Impact of Urokinase-Type Plasminogen Activator and Its Inhibitor PAI-1 in 8377 Breast Cancer Patients, JNCI Journal of the National Cancer Institute, vol.94, issue.2, pp.116-128, 2002.
DOI : 10.1093/jnci/94.2.116

O. T. Fackler and R. Grosse, Cell motility through plasma membrane blebbing, The Journal of Cell Biology, vol.24, issue.6, pp.879-84, 2008.
DOI : 10.1242/jcs.03152

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2426937

G. M. Faustino, M. Gattass, S. Rehen, and C. De-lucena, Automatic embryonic stem cells detection and counting method in fluorescence microscopy images, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.799-802, 2009.
DOI : 10.1109/ISBI.2009.5193170

C. J. Ferro and T. Warner, Scale and texture in digital image classification, Photogrammetric Engineering and Remote Sensing, vol.68, issue.1, pp.51-64, 2002.

R. A. Fisher, THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS, Annals of Eugenics, vol.59, issue.2, pp.179-188, 1936.
DOI : 10.1111/j.1469-1809.1936.tb02137.x

P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nature Reviews Cancer, vol.3, issue.5, pp.362-374, 2003.
DOI : 10.1038/nrc1075

M. Frucci, A novel merging method in watershed segmentation, ICVGIP, 2004.

M. Frucci, OVERSEGMENTATION REDUCTION BY FLOODING REGIONS AND DIGGING WATERSHED LINES, International Journal of Pattern Recognition and Artificial Intelligence, vol.20, issue.01, 2006.
DOI : 10.1142/S0218001406004533

A. Garrido and N. P. De-la-blanca, Applying deformable templates for cell image segmentation, Pattern Recognition, vol.33, issue.5, pp.821-832, 2000.
DOI : 10.1016/S0031-3203(99)00091-6

H. G. Gauch, Scientific Method in Practice, 2003.
DOI : 10.1017/CBO9780511815034

N. Gavert and A. Ben-ze-'ev, Epithelial???mesenchymal transition and the invasive potential of tumors, Trends in Molecular Medicine, vol.14, issue.5, pp.199-209, 2008.
DOI : 10.1016/j.molmed.2008.03.004

J. B. Gibbs, Mechanism-Based Target Identification and Drug Discovery in Cancer Research, Science, vol.287, issue.5460, 2000.
DOI : 10.1126/science.287.5460.1969

J. Gille, U. Meisner, and E. M. Ehlers, Migration pattern, morphology and viability of cells suspended in or sealed with fibrin glue: A histomorphologic study, Tissue and Cell, vol.37, issue.5, pp.339-348, 2005.
DOI : 10.1016/j.tice.2005.05.004

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image processing using MATLAB, 2004.

V. Grau, A. U. Mewes, M. Alcaniz, R. Kikinis, and S. K. Warfield, Improved Watershed Transform for Medical Image Segmentation Using Prior Information, IEEE Transactions on Medical Imaging, vol.23, issue.4
DOI : 10.1109/TMI.2004.824224

M. Grimaud, New measure of contrast: dynamics, Image algebra and morphological image processing III, volume SPIE-1769, pp.292-305, 1992.

B. Grosjean and L. Moisan, A-contrario Detectability of Spots in??Textured Backgrounds, Journal of Mathematical Imaging and Vision, vol.68, issue.2, pp.313-337, 2009.
DOI : 10.1007/s10851-008-0111-4

URL : https://hal.archives-ouvertes.fr/hal-00534713

L. Guigues, J. P. Cocquerez, and H. Men, Scale-sets image analysis, 2006.
DOI : 10.1109/icip.2003.1246612

URL : https://hal.archives-ouvertes.fr/hal-00705364

I. B. Gurevich and I. V. Koryabkina, Comparative analysis and classification of features for image models, Pattern Recognition and Image Analysis, vol.16, issue.3, 2006.
DOI : 10.1134/S1054661806030023

T. Gustavsson, K. Althoff, and J. Degerman, Time-lapse microscopy and image processing for stem cell research: modeling cell migration, Medical Imaging 2003: Image Processing, p.10, 2003.
DOI : 10.1117/12.484301

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

G. Hai, L. Weisi, X. Ping, and S. Wan-chi, Marker-based image segmentation relying on disjoint set union, Proc: Image Comm, pp.100-112, 2006.

D. Hanahan and H. Weinberg, The Hallmarks of Cancer, Cell, vol.100, issue.1, pp.57-70, 2000.
DOI : 10.1016/S0092-8674(00)81683-9

R. M. Haralick, Statistical and structural approaches to texture, Proc. IEEE, pp.786-804, 1979.
DOI : 10.1109/PROC.1979.11328

R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/TSMC.1973.4309314

R. M. Haralick and L. Shapiro, Image segmentation techniques, Computer Vision, Graphics, and Image Processing, vol.29, issue.1, pp.100-132, 1985.
DOI : 10.1016/S0734-189X(85)90153-7

R. M. Haralick and L. Shapiro, Image segmentation techniques, Computer Vision, Graphics, and Image Processing, vol.29, issue.1, pp.100-132, 1985.
DOI : 10.1016/S0734-189X(85)90153-7

T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning, 2001.

C. De-hauwer, F. Darro, I. Camby, R. Kiss, P. Van-ham et al., In vitro motility evaluation of aggregated cancer cells by means of automatic image processing, Cytometry, vol.42, issue.1, pp.1-10, 1999.
DOI : 10.1002/(SICI)1097-0320(19990501)36:1<1::AID-CYTO1>3.0.CO;2-P

G. Heidemann, Unsupervised image categorization, Image and Vision Computing, vol.23, issue.10, pp.861-876, 2005.
DOI : 10.1016/j.imavis.2005.05.016

B. P. Helmke, A. B. Rosen, and P. Davies, Mapping Mechanical Strain of an Endogenous Cytoskeletal Network in Living Endothelial Cells, Biophysical Journal, vol.84, issue.4, pp.2691-2699, 2003.
DOI : 10.1016/S0006-3495(03)75074-7

P. V. Hough, Methods and means to recognize complex patterns, U.S. Patent, vol.3, p.69654, 1962.

K. Huang, M. Velliste, and R. F. Murphy, Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope images, spie, pp.307-318, 2003.

D. Ioannou, W. Huda, and A. Laine, Circle recognition through a 2D Hough Transform and radius histogramming, Image and Vision Computing, vol.17, issue.1, pp.15-26, 1999.
DOI : 10.1016/S0262-8856(98)00090-0

URL : http://ufdc.ufl.edu/LS00000719/00002

R. Jarvis, On the identification of the convex hull of a finite set of points in the plane, Information Processing Letters, vol.2, issue.1, pp.18-21, 1973.
DOI : 10.1016/0020-0190(73)90020-3

R. Jennrich, Statistical Methods for Digital Computers, Stepwise regression, pp.58-75, 1977.

F. Jänickem, A. Prechtl, C. Thomssen, N. Harbeck, C. Meisner et al., Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1, J Natl Cancer Inst, issue.12, pp.93913-920, 2001.

I. T. Jolliffe, Principal Component Analysis, 2002.
DOI : 10.1007/978-1-4757-1904-8

N. N. Kachouie, L. Kang, and A. Khademhosseini, Arraycount, an algorithm for automatic cell counting in microwell arrays, BioTechniques, vol.47, issue.3, pp.10-16, 2009.
DOI : 10.2144/000113202

M. Kass, A. Witkin, and T. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1987.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Kauppinen, T. Seppanen, and M. Pietikainen, An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, issue.2, pp.201-207, 1995.
DOI : 10.1109/34.368168

Z. Khan, T. Balch, and F. Dellaert, Multitarget Tracking with Split and Merged Measurements, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.245

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Kim, J. Jeon, W. W. Choi, P. Kim, and Y. Ho, Automatic Cell Classification in Human???s Peripheral Blood Images Based on Morphological Image Processing, AI 2001: Advances in Artificial Intelligence, pp.165-178, 2001.
DOI : 10.1007/3-540-45656-2_20

W. Klecka, Quantitative Applications in the Social Sciences, 1980.

D. E. Knuth, The art of computer programming, 1973.

A. Korzynska, Automatic Counting of Neural Stem Cells Growing in Cultures, Computer Recognition Systems 2 of Advances in Soft Computing, pp.604-612, 2007.
DOI : 10.1007/978-3-540-75175-5_76

D. Kriesel105, ]. A. Krtolica, C. Ortiz-de-solorzano, S. Lockett, and J. Campisi, A Brief Introduction to Neural Networks Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis, Cytometry, vol.49, pp.73-82, 2002.

C. J. Kuo, S. F. Odeh, and M. C. Huang, Image segmentation with improved watershed algorithm and its FPGA implementation, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196), 2001.
DOI : 10.1109/ISCAS.2001.921180

Y. H. Lai, P. W. Huang, and P. Lin, An effective automated grading system for hcc in biopsy images, Proceedings of the 11th WSEAS International Conference on Computers, pp.396-402, 2007.

P. Lang, K. Yeow, and N. A. , Cellular imaging in drug discovery, Nature Reviews Drug Discovery, vol.327, issue.4, pp.343-356, 2006.
DOI : 10.1016/S0167-6296(02)00126-1

C. Lantuéjoul and F. Maisonneuve, Geodesic methods in quantitative image analysis, Pattern Recognition, vol.17, issue.2, pp.177-187, 1984.
DOI : 10.1016/0031-3203(84)90057-8

G. Lebrun, C. Charrier, O. Lezoray, C. Meurie, and H. Cardot, A fast and efficient segmentation scheme for cell microscopic image, In World Congress of Cellular and Molecular Biology, pp.35-36, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01022477

F. Lefranc, J. Brotchi, and R. Kiss, Possible Future Issues in the Treatment of Glioblastomas: Special Emphasis on Cell Migration and the Resistance of Migrating Glioblastoma Cells to Apoptosis, Journal of Clinical Oncology, vol.23, issue.10, pp.2411-2433, 2005.
DOI : 10.1200/JCO.2005.03.089

O. Lezoray, Segmentation d'images par morphologie mathématique et classification de données par réseaux de neurones : ApplicationàApplicationà la classification de cellules en cytologie des séreuses, 2000.

DOI : 10.5566/ias.v22.p113-120

URL : https://doaj.org/article/ebace17fa99b49e0b614af5070dd4b21

O. Lezoray and H. Cardot, Cooperation of color pixel classification schemes and color watershed: a study for microscopic images, IEEE Transactions on Image Processing, vol.11, issue.7, pp.783-789, 2002.
DOI : 10.1109/TIP.2002.800889

K. Li, E. D. Miller, and L. E. Weiss, Online tracking of migrating and proliferating cells in phase-contrast microscopy, Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition, pp.65-72, 2006.

P. Liao, T. Chen, and P. Chung, A fast algorithm for multilevel thresholding, J. Inf. Sci. Eng, vol.17, issue.5, pp.713-727, 2001.

N. Lichtenstein, B. Geiger, B. , and K. Z. , Quantitative analysis of cytoskeletal organization by digital fluorescent microscopy, Cytometry, vol.10, issue.1, pp.8-18, 2003.
DOI : 10.1002/cyto.a.10053

G. Lin, U. Adiga, K. Olson, J. F. Guzowski, C. A. Barnes et al., A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks, Cytometry, vol.20, issue.1, pp.56-79, 2003.
DOI : 10.1002/cyto.a.10079

Z. Lin, J. S. Jin, and H. Talbot, Unseeded region growing for 3D image segmentation, Selected papers from Pan-Sydney Area Workshop on Visual Information Processing (VIP2000), pp.31-37, 2001.

J. Lindblad, C. Wählby, E. Bengtsson, and A. Zaltsman, Image analysis for automatic segmentation of cytoplasms and classification of Rac1 activation, Cytometry Part A, vol.36, issue.1, pp.22-33, 2004.
DOI : 10.1002/cyto.a.10107

J. Logan, K. Edwards, and S. N. , Real-Time PCR: Current Technology and Applications, 2009.

X. Long, W. L. Cleveland, and Y. L. Yao, A New Preprocessing Approach for Cell Recognition, IEEE Transactions on Information Technology in Biomedicine, vol.9, issue.3, pp.407-412, 2005.
DOI : 10.1109/TITB.2005.847502

X. Long, C. W. Yao, and Y. L. , Effective Automatic Recognition of Cultured Cells in Bright Field Images Using Fisher???s Linear Discriminant Preprocessing, Advances in Bioengineering, pp.1203-1213, 2005.
DOI : 10.1115/IMECE2004-60597

G. David and . Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.

M. Mareel and A. Leroy, Clinical, Cellular, and Molecular Aspects of Cancer Invasion, Physiological Reviews, vol.83, issue.2, pp.337-76, 2003.
DOI : 10.1152/physrev.00024.2002

H. T. Madhloom, S. A. Kareem, H. Ariffin, A. A. Zaidan, H. O. Alanazi et al., An Automated White Blood Cell Nucleus Localization and Segmentation using Image Arithmetic and Automatic Threshold, Journal of Applied Sciences, vol.10, issue.11, 2010.
DOI : 10.3923/jas.2010.959.966

URL : https://doaj.org/article/9ce316870ba740f0b9eadb1e0bb32f67

M. Malo, A. Cartier-michaud, C. Fabre-guillevin, G. Hutzler, F. Delaplace et al., When a Collective Outcome Triggers a Rare Individual Event: A Mode of Metastatic Process in a Cell Population, Mathematical Population Studies, vol.94, issue.3, 2010.
DOI : 10.1016/S0065-230X(08)00007-9

URL : https://hal.archives-ouvertes.fr/hal-00407546

M. Malo, C. Charrì-ere-bertrand, E. Chettaoui, and G. Barlovatz-meimon, The pai-1 swing : Microenvironment and cancer cell migration, C.R. Biol, issue.12, pp.329938-944, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00339600

N. Malpica, C. Ortiz, J. J. Vaquero, A. Santos, I. Vallcorba et al., Applying watershed algorithms to the segmentation of clustered nuclei, Cytometry, vol.1660, issue.4, pp.289-297, 1997.
DOI : 10.1002/(SICI)1097-0320(19970801)28:4<289::AID-CYTO3>3.0.CO;2-7

N. Malpica, C. Solórzano, J. J. Vaquero, . Santos, J. Vallcorba et al., Applying watershed algorithms to the segmentation of clustered nuclei, Cytometry, vol.1660, issue.4, pp.289-297, 1997.
DOI : 10.1002/(SICI)1097-0320(19970801)28:4<289::AID-CYTO3>3.0.CO;2-7

B. S. Manjunath and W. Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.8, pp.837-842, 1996.
DOI : 10.1109/34.531803

P. Maragos and R. W. Schafer, Morphological filters--Part II: Their relations to median, order-statistic, and stack filters, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.35, issue.8, p.351170, 1987.
DOI : 10.1109/TASSP.1987.1165254

P. Maragos and R. D. Ziff, Threshold superposition in morphological image analysis systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.498-504, 1990.
DOI : 10.1109/34.55110

T. Markiewicz, S. Osowski, J. Patera, and W. Kozlowski, Image processing for accurate cell recognition and count on histologic slides, Analytical and quantitative cytology and histology, vol.28, issue.5, pp.281-291, 2006.

D. R. Martin, An empirical approach to grouping and segmentation, Ph.D, 2002.

G. J. Mclachlan-geoffry and J. Mclachlan, Discriminant analysis and statistical pattern recognition, 2004.
DOI : 10.1002/0471725293

C. Meurie, G. Lebrun, O. Lezoray, and A. Elmoataz, A comparison of supervised pixel-based color image segmentation methods, application in cancerology, 2003.

F. Meyer, Topographic distance and watershed lines, Signal Processing, vol.38, issue.1, pp.113-125, 1994.
DOI : 10.1016/0165-1684(94)90060-4

F. G. Meyer and S. Beucher, Morphological segmentation, Journal of Visual Communication and Image Representation, vol.1, issue.1, pp.21-46, 1990.
DOI : 10.1016/1047-3203(90)90014-M

Y. Meyer, Oscillating patterns in image processing and in some nonlinear evolution equations, 2001.

T. Mijatovic, P. Gailly, V. Mathieu, and C. Decaestecker, Neurotensin is a versatile modulator of in vitro human pancreatic ductal adenocarcinoma cell (pdac) migration, Cell. Oncol, vol.29, pp.315-326, 2007.

N. Mohanty, T. M. Rath, and A. Lea, Lecture notes in computer science, nternational Conference on Image and Video Retrieval, pp.589-598, 2005.

L. Najman and M. Schmitt, Watershed of a continuous function, Signal Processing, vol.38, issue.1, pp.99-112, 1994.
DOI : 10.1016/0165-1684(94)90059-0

URL : https://hal.archives-ouvertes.fr/hal-00622129

L. Najman and M. Schmitt, Geodesic saliency of watershed contours and hierarchical segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.18, issue.12, pp.1163-1173, 1996.
DOI : 10.1109/34.546254

URL : https://hal.archives-ouvertes.fr/hal-00622128

T. W. Nattkemper, T. Twellmann, W. Schubert, and H. Ritter, Human vs. machine: evaluation of fluorescence micrographs, Computers in Biology and Medicine, vol.33, issue.1, pp.31-43, 2003.
DOI : 10.1016/S0010-4825(02)00060-4

I. Nyström, G. Sanniti-di-baja, and S. Svensson, Perimeter and Area Estimations of Digitized Objects with Fuzzy Borders, Lecture Notes in Computer Science, vol.2886, 2003.

E. Obser, S. Lepert, and S. Lelandais, Image processing for glass industry, Int. Conf. on Quality Control by Artificial Vision (QCAV'98), 1998.

O. William, Quaestiones et decisiones in quattuor libros sententiarum petri lombardi Lugd., i, dist, p.1495

A. Onn and I. J. Fidler, Metastatic potential of human neoplasms, In Vivo, vol.16, issue.6, pp.423-432, 2002.

S. Osher, A. Solé, and L. Vese, Image decomposition and restoration using total variation minimization and the H ?1 norm, 2003.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.
DOI : 10.1109/TSMC.1979.4310076

N. R. Pal and S. K. , A review on image segmentation techniques, Pattern Recognition, vol.26, issue.9, pp.1277-1294, 1993.
DOI : 10.1016/0031-3203(93)90135-J

D. P. Panda and A. Rosenfeld, Image Segmentation by Pixel Classification in (Gray Level, Edge Value) Space, IEEE Transactions on Computers, vol.27, issue.9, pp.875-879, 1978.
DOI : 10.1109/TC.1978.1675208

T. Pavlidis, Structural Pattern Recognition, 1977.
DOI : 10.1007/978-3-642-88304-0

T. Pavlidis, Hierarchies in structural pattern recogniton, Proceedings of IEEE, pp.737-744, 1979.

T. Pavlidis and Y. T. Liow, Integrating region growing and edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.3, pp.225-233, 1990.
DOI : 10.1109/34.49050

T. X. Pedersen, C. J. Pennington, K. Almholt, I. J. Christensen, B. S. Nielsen et al., Extracellular protease mRNAs are predominantly expressed in the stromal areas of microdissected mouse breast carcinomas, Carcinogenesis, vol.26, issue.7, pp.261233-1240, 2005.
DOI : 10.1093/carcin/bgi065

H. Peng, X. Zhou, F. Li, X. Xia, and S. T. Wong, Integrating multiscale blob/curvilinear detector techniques and multi-level sets for automated segmentation of stem cell images, ISBI, pp.1362-1365, 2009.

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.12629-639, 1990.
DOI : 10.1109/34.56205

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Philipp-foliguet and L. Guigues, Multi-Scale Criteria for the Evaluation of Image Segmentation Algorithms, Journal of Multimedia, vol.3, issue.5, 2008.
DOI : 10.4304/jmm.3.5.42-56

URL : https://hal.archives-ouvertes.fr/hal-00468864

R. Pinzón, G. Garavito, L. Arteaga, Y. Hata, and J. García, Development of an automatic counting system for blood smears, Proc. of the Cong, pp.45-49, 2004.

S. Popescu, A voxel-based lidar method for estimating crown base height for deciduous and pine trees, Remote Sensing of Environment, vol.112, issue.3, pp.767-781, 2008.
DOI : 10.1016/j.rse.2007.06.011

R. T. Proffitt, J. V. Tran, and C. P. Reynolds, A fluorescence digital image microscopy system for quantifying relative cell numbers in tissue culture plates, Cytometry, vol.24, issue.3, pp.204-213, 1996.
DOI : 10.1002/(SICI)1097-0320(19960701)24:3<204::AID-CYTO3>3.0.CO;2-H

G. P. Qiu and F. J. Feng, Compressing histogram representations for automatic colour photo categorization, Pattern Recognition, vol.37, issue.11, pp.2177-2193, 2004.
DOI : 10.1016/j.patcog.2004.03.006

C. Rambabu and I. Chakrabarti, An efficient immersion-based watershed transform method and its prototype architecture, Journal of Systems Architecture, vol.53, issue.4, 2007.
DOI : 10.1016/j.sysarc.2005.12.005

P. Ranefall, K. Wester, and E. Bengtsson, Automatic Quantification of Immunohistochemically Stained Cell Nuclei Using Unsupervised Image Analysis, Analytical Cellular Pathology, vol.16, issue.1
DOI : 10.1155/1998/608293

M. Ranzato, P. E. Taylor, and J. M. House, Automatic recognition of biological particles in microscopic images, Pattern Recognition Letters, vol.28, issue.1, pp.31-39, 2007.
DOI : 10.1016/j.patrec.2006.06.010

X. Ren and J. Malik, Learning a classification model for segmentation, Proceedings Ninth IEEE International Conference on Computer Vision, pp.10-18, 2003.
DOI : 10.1109/ICCV.2003.1238308

B. D. Ripley, Pattern Recognition and Neural Networks, 1996.
DOI : 10.1017/CBO9780511812651

K. Rodenacker and E. Bengtsson, A Feature Set for Cytometry on Digitized Microscopic Images, Analytical Cellular Pathology, vol.25, issue.1, pp.1-36, 2003.
DOI : 10.1155/2003/548678

C. Rosello, P. Ballet, E. Planus, and P. Tracqui, Model Driven Quantification of Individual and Collective Cell Migration, Acta Biotheoretica, vol.52, issue.4, pp.343-363, 2004.
DOI : 10.1023/B:ACBI.0000046602.58202.5e

A. Rosenfeld and J. Pfaltz, Distance functions on digital pictures, Pattern Recognition, vol.1, issue.1, pp.33-61, 1968.
DOI : 10.1016/0031-3203(68)90013-7

P. K. Sahoo, S. Soltani, A. K. Wong, and C. , A survey of thresholding techniques. Comput. Vision Graph, Image Process, vol.41, pp.233-260, 1988.

F. Schnorrenberg, C. S. Pattichis, K. C. Kyriacou, and C. Schizas, Computer-aided detection of breast cancer nuclei, IEEE Transactions on Information Technology in Biomedicine, vol.1, issue.2, pp.128-140, 1997.
DOI : 10.1109/4233.640655

J. Selinummi, J. Seppälä, O. Yli-harja, and J. A. Puhakka, Software for quantification of labeled bacteria from digital microscope images by automated image analysis, BioTechniques, vol.39, issue.6, pp.859-863, 2005.
DOI : 10.2144/000112018

S. Sergent-tanguy, C. Chagneau, I. Neveu, and P. Naveilhan, Fluorescent activated cell sorting (FACS): a rapid and reliable method to estimate the number of neurons in a mixed population, Journal of Neuroscience Methods, vol.129, issue.1, pp.73-79, 2003.
DOI : 10.1016/S0165-0270(03)00210-3

J. Serra, Image analysis and mathematical morphology, Theoretical advances, 1988.

J. Serra and L. Vincent, An overview of morphological filtering, Circuits Systems and Signal Processing, vol.34, issue.No. 4, pp.47-108, 1992.
DOI : 10.1007/BF01189221

M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging, vol.13, issue.1, pp.146-168, 2004.

L. G. Shapiro, Connected Component Labeling and Adjacency Graph Construction, Topological Algorithms for Digital Image Processing, pp.1-30, 1996.
DOI : 10.1016/S0923-0459(96)80011-5

H. Sheikh, B. Zhu, and E. Micheli-tzanakou, Blood cell identification using neural networks, Proceedings of the IEEE 22nd Annual Northeast Bioengineering Conference, pp.119-120, 1996.
DOI : 10.1109/NEBC.1996.503246

I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, C. et al., Automated image analysis system for detecting boundaries of live prostate cancer cells, Cytometry, vol.31, issue.4, pp.287-294, 1998.
DOI : 10.1002/(SICI)1097-0320(19980401)31:4<287::AID-CYTO8>3.0.CO;2-G

I. Simon and P. C. , Automated image analysis system for detecting boundaries of live prostate cancer cells, Cytometry, vol.31, issue.4, pp.287-294, 1998.
DOI : 10.1002/(SICI)1097-0320(19980401)31:4<287::AID-CYTO8>3.0.CO;2-G

S. W. Sio and W. Sun, MalariaCount: An image analysis-based program for the accurate determination of parasitemia, Journal of Microbiological Methods, vol.68, issue.1, pp.11-18, 2007.
DOI : 10.1016/j.mimet.2006.05.017

S. W. Sio, W. Sun, S. Kumar, W. Z. Bin, S. S. Tan et al., MalariaCount: An image analysis-based program for the accurate determination of parasitemia, Journal of Microbiological Methods, vol.68, issue.1, pp.11-18, 2007.
DOI : 10.1016/j.mimet.2006.05.017

P. Soille, Constrained connectivity for hierarchical image partitioning and simplification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.7, pp.1132-1145, 2008.
DOI : 10.1109/TPAMI.2007.70817

C. Ortiz-de-solorzano, R. Malladi, S. A. Lelì, and S. J. Lockett, Segmentation of nuclei and cells using membrane related protein markers, Journal of Microscopy, vol.201, issue.3, pp.404-415, 2001.
DOI : 10.1046/j.1365-2818.2001.00854.x

C. Spearman, The Abilities of Man: Their Nature and Measurement, 1927.

J. Starck, M. Elad, and D. Donoho, Image decomposition: separation of texture from piecewise smooth content, Wavelets: Applications in Signal and Image Processing X, 2003.
DOI : 10.1117/12.507447

D. J. Stephens and A. V. , Light Microscopy Techniques for Live Cell Imaging, Science, vol.300, issue.5616, p.82, 2003.
DOI : 10.1126/science.1082160

H. Sun, J. Yang, and M. Ren, A fast watershed algorithm based on chain code and its application in image segmentation, Pattern Recognition Letters, vol.26, issue.9, pp.1266-1274, 2005.
DOI : 10.1016/j.patrec.2004.11.007

S. O. Suzuki and T. Iwaki, Dynamic analysis of glioma cells: Looking into "movement phenotypes", Neuropathology, vol.114, issue.3, pp.254-262, 2005.
DOI : 10.1083/jcb.200408047

J. R. Swedlow, I. Goldberg, E. Brauner, and P. K. Sorger, Informatics and Quantitative Analysis in Biological Imaging, Science, vol.300, issue.5616, pp.100-102, 2007.
DOI : 10.1126/science.1082602

J. Taylor, J. Hickson, T. Lotan, D. S. Yamada, and C. Schaeffer, Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment, Cancer and Metastasis Reviews, vol.55, issue.1, pp.67-73, 2008.
DOI : 10.1007/s10555-007-9106-7

R. Development and C. Team, R: A language and environment for statistical com-puting. In R Foundation for Statistical Computing, 2005.

J. Theerapattanakul, J. Plodpai, and C. Pintavirooj, An efficient method for segmentation step of automated white blood cell classifications, 2004 IEEE Region 10 Conference TENCON 2004., pp.191-194, 2004.
DOI : 10.1109/TENCON.2004.1414389

F. J. Theis, Z. Kohl, H. G. Kuhn, H. G. Stockmeier, and E. W. Lang, Automated counting of labelled cells in rodent brain section images, Proc. of Int. Conf. Biomedical Engineering (BioMED), pp.209-212, 2004.

F. J. Theis, Z. Kohl, H. G. Kuhn, H. G. Stockmeier, and E. W. Lang, Zane an algorithm for counting labelled cells in section images, Proc. of European Signal Processing Conference (EUSIPCO), pp.312-319, 2004.

F. T. Theis, Z. Kohlb, C. Guggenbergera, G. Kuhnb, and L. E. , Automated counting of newborn cells during neurogenesis, 2009.

J. P. Thiery, Epithelial???mesenchymal transitions in tumour progression, Nature Reviews Cancer, vol.59, issue.6, pp.442-454, 2002.
DOI : 10.1038/nrc822

J. Thiran and B. Macq, Morphological feature extraction for the classification of digital images of cancerous tissues, IEEE Transactions on Biomedical Engineering, vol.43, issue.10, pp.1011-1020, 1996.
DOI : 10.1109/10.536902

K. Tieu and P. Viola, Boosting Image Retrieval, International Journal of Computer Vision, vol.56, issue.1/2, pp.17-36, 2004.
DOI : 10.1023/B:VISI.0000004830.93820.78

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Trémeau and P. Colantoni, Regions adjacency graph applied to color image segmentation, IEEE Transactions on Image Processing, vol.9, issue.4, pp.735-744, 2000.
DOI : 10.1109/83.841950

G. L. Turin, An introduction to matched filters, IEEE Transactions on Information Theory, vol.6, issue.3, pp.310-329, 1960.
DOI : 10.1109/TIT.1960.1057571

V. V. Kindratenko, On using functions to describe the shape, Journal of Mathematical Imaging and Vision, vol.18, issue.3, pp.225-245, 2003.
DOI : 10.1023/A:1022843426320

L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, Journal of Scientific Computing, vol.19, issue.1/3, pp.553-572, 2003.
DOI : 10.1023/A:1025384832106

V. Vigneron, S. Lelandais, C. Charriere-bertrand, M. Malo, A. Ugon et al., Pro or cons local vs. global imagery information for identifying cell migratory potential, 15th EUSIPCO, pp.443-448, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00203105

V. Vigneron, T. Q. Syed, G. Barlovatz-meimon, M. Malo, C. Montagne et al., Adaptive filtering and hypothesis testing: Application to cancerous cells detection, Pattern Recognition Letters, vol.31, issue.14, pp.312214-2224, 2010.
DOI : 10.1016/j.patrec.2010.05.023

URL : https://hal.archives-ouvertes.fr/hal-00744931

E. Vincan, T. Brabletz, M. C. Faux, and R. G. Ramsay, A Human Three-Dimensional Cell Line Model Allows the Study of Dynamic and Reversible Epithelial-Mesenchymal and Mesenchymal-Epithelial Transition That Underpins Colorectal Carcinogenesis, Cells Tissues Organs, vol.185, issue.1-3, pp.20-28, 2007.
DOI : 10.1159/000101299

L. Vincent, Morphological grayscale reconstruction in image analysis: applications and efficient algorithms, IEEE Transactions on Image Processing, vol.2, issue.2, pp.176-201, 1993.
DOI : 10.1109/83.217222

L. Vincent, Mathematical Morphology and its Applications to Image and Signal Processing, 2000.

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

L. Vincet, Segmentation et Mise en Correspondance de R'egions de Paires d'Images Stéréoscopiques, 1991.

C. Wahlby, Algorithms for Applied Digital Image Cytometry, 2003.

C. Wählby, I. Sintorn, F. Erlandsson, G. Borgefors, and E. Bengtsson, Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections, Journal of Microscopy, vol.215, issue.1, pp.67-76, 2004.
DOI : 10.1111/j.0022-2720.2004.01338.x

C. Wählby and I. Sintorn, Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections, Journal of Microscopy, vol.215, issue.1, pp.67-76, 2004.
DOI : 10.1111/j.0022-2720.2004.01338.x

C. L. Weber, Elements of detection and signal design, 1968.
DOI : 10.1007/978-1-4612-4774-6

P. D. Wendt, E. J. Coyle, N. C. Gallagher-jr, and . Stack, Stack filters, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.34, issue.4, pp.898-911, 1986.
DOI : 10.1109/TASSP.1986.1164871

C. Wählby, J. Lindblad, M. Vondrus, E. Bengtsson, and L. Björkesten, Algorithms for Cytoplasm Segmentation of Fluorescence Labelled Cells, Analytical Cellular Pathology, vol.24, issue.2-3, pp.101-111, 2002.
DOI : 10.1155/2002/821782

C. E. Wilkins-port, C. E. Higgins, J. Freytag, S. Higgins, J. A. Carlson et al., 1/EGF-Induced Invasive Phenotype in Mutant p53 Human Cutaneous Squamous Cell Carcinoma, Journal of Biomedicine and Biotechnology, vol.7, issue.23, pp.1233-1240, 2007.
DOI : 10.1074/jbc.M413327200

D. L. Wilson, A. J. Baddeley, and R. A. Owens, A new metric for grey-scale image comparison, International Journal of Computer Vision, vol.24, issue.1, 1997.

I. P. Witz, Tumor???Microenvironment Interactions: Dangerous Liaisons, Adv Cancer Res, vol.100, pp.203-229, 2008.
DOI : 10.1016/S0065-230X(08)00007-9

Q. Xu and C. Karam, A distributed Canny edge detector and its implementation on FPGA, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp.500-505, 2011.
DOI : 10.1109/DSP-SPE.2011.5739265

F. Yang, M. A. Mackey, F. Ianzini, G. Gallardo, and M. Sonka, Cell Segmentation, Tracking, and Mitosis Detection Using Temporal Context, Med Image Comput Comput Assist Interv, vol.8, issue.1, pp.302-309, 2005.
DOI : 10.1007/11566465_38

Q. Yang and B. Parvin, CHEF: convex hull of elliptic features for 3D blob detection, ICPR, pages II, pp.282-285, 2002.

W. A. Yasnoff, W. Galbraith, and J. W. Bacus, Error measures for objective assessment of scene segmentation algorithms, AQC, vol.1, pp.107-121, 1979.

D. Yi, L. Smith, and M. Smith, A computer assisted diagnosis system for malignant melanoma using 3D skin surface texture features and artificial neural network, Int. J. of Modelling, vol.9, pp.370-381, 2010.

M. Yi-de, D. Ro-lan, L. Li, and Z. Zai-fen, An counting and segmentation method of blood cell image with logical and morphological feature of cell, Chinese Journal of Electronics SCI&EI, 2001.

L. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

M. H. Zaman, L. M. Trapani, A. L. Sieminski, and D. Mackellar, Migration of tumor cells in 3d matrices is governed by matrix stiffness along with cellmatrix adhesion and proteolysis, Biophys J, vol.103, issue.29, pp.10889-10894, 2006.

F. Zernike, Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode, Physica, vol.1, issue.7-12, pp.689-704, 1934.
DOI : 10.1016/S0031-8914(34)80259-5

F. Zernike, Phase-contrast, a new method for microscopic observation of transparent objects, pp.686-986, 1942.

F. Zernike, How I Discovered Phase Contrast, Science, vol.121, issue.3141, 1953.
DOI : 10.1126/science.121.3141.345

H. Zhang, J. E. Fritts, and S. A. Goldman, Image segmentation evaluation: A survey of unsupervised methods, Computer Vision and Image Understanding, vol.110, issue.2, pp.260-280, 2008.
DOI : 10.1016/j.cviu.2007.08.003

Y. J. Zhang, A survey on evaluation methods for image segmentation, Pattern Recognition, vol.29, issue.8, pp.1335-1346, 1996.
DOI : 10.1016/0031-3203(95)00169-7

Y. J. Zhang, Evaluation and comparison of different segmentation algorithms, Pattern Recognition Letters, vol.18, issue.10, pp.963-974, 1997.
DOI : 10.1016/S0167-8655(97)00083-4

Y. J. Zhang and J. J. Gerbrands, Objective and quantitative segmentation evaluation and comparison, Signal Processing, vol.39, issue.1-2, pp.43-54, 1994.
DOI : 10.1016/0165-1684(94)90122-8

Q. Zheng, B. K. Milthorpe, and J. A. , Direct neural network application for automated cell recognition, Cytometry, vol.22, issue.1, pp.1-9, 2004.
DOI : 10.1002/cyto.a.10106

C. Zimmer, E. Labruyere, and Y. V. , Improving active contours for segmentation and tracking of motile cells in videomicroscopy, Object recognition supported by user interaction for service robots, pp.286-289, 2002.
DOI : 10.1109/ICPR.2002.1048296

K. H. Zou, S. K. Warfield, A. Bharatha, C. M. Tempany, M. R. Kaus et al., Statistical validation of image segmentation quality based on a spatial overlap index1, Academic Radiology, vol.11, issue.2, pp.178-189, 19200493.
DOI : 10.1016/S1076-6332(03)00671-8