D. Différentsdiff´différents, D. Au, and . Du-syst-`-emesyst-`-syst, EME DAOX de reconna??trereconna??tre la forme la plusrégulì ere entre deux ayant, ` a titre d'exemple, la même surface et deux périmètres différents. En effet

D. Différentsdiff´différents, D. Au, . Du-syst-`-emesyst-`-syst-`-eme, and . Daox, Les résultats de classification confirment que cette entité est plus discriminante que les descripteurs P , Rect et A. La surface sous la courbe ROC du descripteur Com représentée dans la figure 5.6 par un trait pointillé est plus importante (A Com 5, EVALUATION, vol.6

E. Des, . Descripteurs, . Sein, . Syst-`-emesyst-`-syst-`-eme-daox, K. Cheikhrouhou et al., Liste des publications Articles dans des revues internationales avec comités de lecture -Imene Cheikhrouhou Kachouri, Khalifa Djemal et Hichem Maaref Characterization of mammographic masses using a new spiculated mass descriptor in computer aided diagnosis systems Accepté pour publicationàpublicationà Communications internationales avec actes -I Protuberance selection descriptor for breast cancer diagnosis, INDERSCIENCE ENTERPRISES Third European Workshop on Visual Information Processing (EUVIP'11), pp.280-285, 2011.

-. Cheikhrouhou, K. Djemal, and H. Maaref, Diagnostic Assisté par ordinateur pour le dépistage du cancer du sein, Cinquì eme workshop : Applications Médicales de l'Informatique: Nouvelles Approches (AMINA'10), pp.47-52, 2010.

-. Cheikhrouhou, K. Djemal, H. Maarefi, K. Cheikhrouhou, D. Djemal et al., Mass Description for Breast Cancer Recognition Empirical Descriptors Evaluation for Mass Malignity Recognition. The First International Workshop on Medical Image Analysis and Description for Diagnosis Systems, Forth International Conference on Image and Signal Processing (ICISP'10) conjunction with the 2nd International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC'09), pp.576-58491, 2009.

-. Cheikhrouhou, K. Djemal, D. Sellami, N. Derbel, H. Maaref.-i et al., New mass description inmammographies. First International Workshops on Image Processing Theory, Tools & Applications (IPTA'08) Abnormalities description for breast cancer recognition, Intenational Conference on E-Medical Systems (E-Medisys07) Mnif, H. Maaref and N. Derbel. MLP Neural Network Classifier for breast cancer diagnostic. Quatrì eme conférence Internationale Signaux, Circuits et Systèmes (SSD' 07), pp.198-205, 2007.
DOI : 10.1109/ipta.2008.4743751

A. A. Amini, T. Weymouth, and R. Jain, Using dynamic programming for solving variational problems in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.9, pp.855-867, 1990.
DOI : 10.1109/34.57681

S. M. Astley and F. J. Gilbert, Computer-aided detection in mammography, Clinical Radiology, vol.59, issue.5, pp.390-399, 2004.
DOI : 10.1016/j.crad.2003.11.017

D. Attali and A. Montanvert, Computing and Simplifying 2D and 3D Continuous Skeletons, Computer Vision and Image Understanding, vol.67, issue.3, pp.261-273, 1997.
DOI : 10.1006/cviu.1997.0536

A. Belot, P. Grosclaude, N. Bossard, E. Jougla, E. Benhamou et al., Cancer incidence and mortality in france over the period, pp.159-175, 1980.
URL : https://hal.archives-ouvertes.fr/hal-00538673

K. S. Berbaum, D. D. Dorfman, and E. A. Franken, Mesuring observer performance by roc analysis, indications and complications, Investigative Radiology, vol.24, issue.3, pp.229-245, 1994.

M. O. Berger and R. Mohr, Towards autonomy in active contour models, [1990] Proceedings. 10th International Conference on Pattern Recognition, pp.847-851, 1990.
DOI : 10.1109/ICPR.1990.118228

URL : https://hal.archives-ouvertes.fr/inria-00548463

G. Bertrand and M. Couprie, New 2D Parallel Thinning Algorithms Based on Critical Kernels, Lecture Notes in Computer Science, vol.4040, pp.45-59, 2006.
DOI : 10.1007/11774938_5

URL : https://hal.archives-ouvertes.fr/hal-00622002

R. E. Bird, T. W. Wallace, Y. , and B. C. , Analysis of cancers missed at screening mammography., Radiology, vol.184, issue.3, pp.613-617, 1992.
DOI : 10.1148/radiology.184.3.1509041

H. Blum, A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Form, pp.362-380, 1967.

U. Bottigli, D. Cascio, F. Fauci, B. Golosio, R. Magro et al., Massive lesions classification using features based on morphological lesion differences, Proceedings of World Academy of Science, Engineering and Technology, 2006.

J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, issue.6, pp.679-698, 1986.

Y. Cao, X. Hao, and S. Xia, An improved region-growing algorithm for mammographic mass segmentation, Medical imaging, parallel processing of images, and optimization techniques, 2009.

R. C. Carrasco and M. L. Forcada, A note on the Nagendraprasad-Wang-Gupta thinning algorithm, Pattern Recognition Letters, vol.16, issue.5, pp.539-541, 1995.
DOI : 10.1016/0167-8655(95)00121-V

H. P. Chan, C. J. Vyborny, H. Macmahon, C. E. Metz, K. Doi et al., Digital mammography: Roc studies of the effects of pixel size and unsharpmask filtering on the detection of subtle microcalcifications, Investigative Radiology, issue.7, pp.22581-589, 1987.

T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, vol.10, issue.2, pp.266-277, 2001.
DOI : 10.1109/83.902291

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Cheikhrouhou, K. Djemal, and H. Maaref, Characterization of mammographic masses using a new spiculated mass descriptor in computer aided diagnosis systems, International Journal of Signal and Imaging Systems Engineering (IJSISE), 2011.

I. Cheikhrouhou, K. Djemal, D. Sellami, N. Derbel, and H. Maaref, Abnormalities description for breast cancer recognition, The First International Conference on E-Medical Systems E-Medisys 07, pp.198-205, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00342193

I. Cheikhrouhou, K. Djemal, D. Sellami, H. Maaref, and N. Derbel, Empirical descriptors evaluation for mass malignity recognition. In The First International Workshop on Medical Image Analysis and Description for Diagnosis Systems - MIAD'09, pp.91-100, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00666629

C. M. Chen, Y. H. Chou, K. C. Han, G. S. Hung, C. M. Tiu et al., Breast Lesions on Sonograms: Computer-aided Diagnosis with Nearly Setting-Independent Features and Artificial Neural Networks, Radiology, vol.226, issue.2, pp.504-514, 2003.
DOI : 10.1148/radiol.2262011843

C. Y. Chen, H. J. Chiou, Y. H. Chou, S. Y. Chiou, H. K. Wang et al., Computer-aided Diagnosis of Soft Tissue Tumors on High-resolution Ultrasonography with Geometrical and Morphological Features, Academic Radiology, vol.16, issue.5, pp.618-626, 2009.
DOI : 10.1016/j.acra.2008.12.016

H. D. Cheng, X. J. Shi, R. Min, L. M. Hu, X. P. Cai et al., Approaches for automated detection and classification of masses in mammograms, Pattern Recognition, vol.39, issue.4, pp.646-668, 2006.
DOI : 10.1016/j.patcog.2005.07.006

G. Choquet, Cours de topologie, Dunod, vol.54, 1978.

S. Ciatto, M. R. Turco, G. Risso, S. Catarzi, R. Bonaldi et al., Comparison of standard reading and computer aided detection (CAD) on a national proficiency test of screening mammography, European Journal of Radiology, vol.45, issue.2, pp.135-138, 2003.
DOI : 10.1016/S0720-048X(02)00011-6

D. Coeurjolly, S. Miguet, and L. Tougne, Discrete Curvature Based on Osculating Circle Estimation, Proc. Int. workshop Visual Form., 2059 of Lecture Notes in Computer Science, pp.303-302, 2001.
DOI : 10.1007/3-540-45129-3_27

C. Cortes and M. Mohri, Auc optimization vs. error rate minimization, Advances in Neural Information Processing Systems, 2004.

P. Delogu, M. E. Fantaccia, P. Kasae, A. , and R. , Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier, Computers in Biology and Medicine, vol.37, issue.10, 2007.
DOI : 10.1016/j.compbiomed.2007.01.009

J. Dengler, S. Behrens, and J. F. Desaga, Segmentation of microcalcifications in mammograms, IEEE Transactions on Medical Imaging, vol.12, issue.4, pp.634-642, 1993.
DOI : 10.1109/42.251111

K. Djemal, W. Puech, R. , and B. , AUTOMATIC ACTIVE CONTOURS PROPAGATION IN A SEQUENCE OF MEDICAL IMAGES, International Journal of Image and Graphics, vol.06, issue.02, pp.267-292, 2006.
DOI : 10.1142/S0219467806002252

URL : https://hal.archives-ouvertes.fr/lirmm-00114157

A. R. Dominguez and A. K. Nandi, Toward breast cancer diagnosis based on automated segmentation of masses in mammograms, Pattern Recognition, vol.42, issue.6, pp.1138-1148, 2009.
DOI : 10.1016/j.patcog.2008.08.006

D. Orsi, C. J. Bassett, L. W. Berg, W. A. Feig, S. A. Jackson et al., American college of radiology (breast imaging reporting and data system), 2003.

M. J. Er, S. Wu, J. Lu, and H. L. Toh, Face recognition with radial basis function (rbf) neural networks, IEEE transactions on neural networks, vol.13, issue.3, pp.697-710, 2002.

T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, vol.27, issue.8, pp.861-874, 2006.
DOI : 10.1016/j.patrec.2005.10.010

S. A. Feig, C. J. Orsi, R. E. Hendrick, V. P. Jackson, D. B. Kopans et al., American College of Radiology guidelines for breast cancer screening., American Journal of Roentgenology, vol.171, issue.1, pp.29-33, 1998.
DOI : 10.2214/ajr.171.1.9648758

R. Gordon and R. M. Rangayyan, Feature enhancement of film mammograms using fixed and adaptive neighborhoods, Applied Optics, vol.23, issue.4, pp.560-564, 1984.
DOI : 10.1364/AO.23.000560

L. Hadjiiski, H. P. Chan, B. Sahiner, M. A. Helvie, M. A. Roubidoux et al., Improvement in Radiologists??? Characterization of Malignant and Benign Breast Masses on Serial Mammograms with Computer-aided Diagnosis: An ROC Study, Radiology, vol.233, issue.1, pp.255-265, 2004.
DOI : 10.1148/radiol.2331030432

G. Hamarneh and X. Li, Watershed segmentation using prior shape and appearance knowledge, Image and Vision Computing, vol.27, issue.1-2, pp.59-68, 2009.
DOI : 10.1016/j.imavis.2006.10.009

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. M. Haralick, Statistical and structural approaches to texture, Proceedings of the IEEE, pp.786-804, 1979.
DOI : 10.1109/PROC.1979.11328

R. M. Haralick, I. Dinstein, and K. Shanmugam, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/TSMC.1973.4309314

M. Heath, K. Bowyer, D. Kopans, R. Moore, and P. Kegelmeyer, The digital database for screening mammography, 5th International Workshop on Digital Mammography, pp.212-218, 2000.

M. D. Heath and K. W. Bowyer, Mass detection by relative image intensity, 5th International Workshop on Digital Mammography, pp.219-225, 2000.

S. L. Hillis, N. A. Obuchowski, K. M. Schartz, and K. S. Berbaum, A comparison of the Dorfman???Berbaum???Metz and Obuchowski???Rockette methods for receiver operating characteristic (ROC) data, Statistics in Medicine, vol.12, issue.10, pp.241579-1607, 2005.
DOI : 10.1002/sim.2024

S. L. Horowitz and S. Pavlidis, Picture segmentation by a directed split and merge procedure, Second International Joint Conference on Pattern Recognition, pp.424-433, 1974.

Z. Huo, M. L. Giger, C. J. Vyborny, U. Bick, P. Lu et al., Analysis of spiculation in the computerized classification of mammographic masses, Medical Physics, vol.22, issue.10, pp.221569-1579, 1995.
DOI : 10.1118/1.597626

T. L. Ji, M. K. Sundareshan, and H. Roehrig, Adaptive image contrast enhancement based on human visual properties, IEEE Transactions on Medical Imaging, vol.13, issue.4, pp.573-586, 1994.
DOI : 10.1109/42.363111

H. Jiang, W. Tiu, S. Yamamoto, and S. I. Iisaku, Automatic recognition of spicules in mammograms, International Conference on Image Processing, pp.520-523, 1997.
DOI : 10.1007/3-540-63508-4_148

R. Kachouri, K. Djemal, and H. Maaref, Multi-model classification method in heterogeneous image databases, Pattern Recognition, vol.43, issue.12, pp.434077-4088, 2010.
DOI : 10.1016/j.patcog.2010.07.001

URL : https://hal.archives-ouvertes.fr/hal-00654705

M. Kass, A. Witkin, T. , and D. , Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1987.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Kerautret and J. Lachaud, Robust Estimation of Curvature along Digital Contours with Global Optimization, International conference on Discrete geometry for computer imagery, pp.334-345, 2008.
DOI : 10.1007/978-3-540-79126-3_30

URL : https://hal.archives-ouvertes.fr/inria-00345779

B. Kerautret, J. Lachaud, and B. Naegel, Comparison of Discrete Curvature Estimators and Application to Corner Detection, Proceedings of ISVC'08: 4th International Symposium on Visual Computing, pp.710-719, 2008.
DOI : 10.1007/978-3-540-89639-5_68

URL : https://hal.archives-ouvertes.fr/inria-00345781

J. Kilday, F. Palmieri, and M. D. Fox, Classifying mammographic lesions using computerized image analysis, IEEE Transactions on Medical Imaging, vol.12, issue.4, pp.664-669, 1993.
DOI : 10.1109/42.251116

J. K. Kim, J. M. Park, K. S. Song, and H. W. Park, Adaptive mammographic image enhancement using first derivative and local statistics, IEEE Transactions on Medical Imaging, vol.16, issue.5, pp.495-502, 1997.

H. Kobatake and M. Murakami, Adaptive filter to detect rounded convex regions: iris filter, Proceedings of 13th International Conference on Pattern Recognition, pp.340-345, 1996.
DOI : 10.1109/ICPR.1996.546846

T. Kohonen, Self-Organization and Associative Memory, 1984.
DOI : 10.1007/978-3-642-88163-3

E. A. Krupinski and R. M. Nishikawa, Comparison of eye position versus computer identified microcalcification clusters on mammograms, Medical Physics, vol.24, issue.1, pp.17-23, 1997.
DOI : 10.1118/1.597941

M. A. Kupinski and M. L. Giger, Automated seeded lesion segmentation on digital mammograms, IEEE Transactions on Medical Imaging, vol.17, issue.4, 1998.
DOI : 10.1109/42.730396

A. Laine, J. Fan, Y. , and W. H. , Wavelets for contrast enhancement of digital mammography, IEEE Engineering in Medicine and Biology Magazine, vol.14, issue.5, pp.536-550, 1995.
DOI : 10.1109/51.464770

M. Lanyi, Morphologic analysis of microcalcifications. Early Breast Cancer, 1985.

M. Legal, G. Chavanne, and D. Pellier, Valeur diagnostique des microcalcificationsgroupées découvertes par mammographie. a propos de 227 cas, Bull Cancer, vol.71, pp.57-64, 1984.

A. Letreut and M. H. Dilhuydy, Mammographie, guide d'interprétation, pp.155-165, 1988.

C. Li, C. Y. Kao, J. C. Gore, and Z. Ding, Minimization of region-scalable fitting energy for image segmentation, IEEE Transactionss on Image Processing, issue.10, pp.171940-1949, 2008.

C. Li, C. Xu, C. Gui, and M. D. Fox, Level set evolution without re-initialization: A new variational formulation, IEEE Conference on Computer Vision and Pattern Recognition, pp.430-436, 2005.

L. Li, R. A. Clark, T. , and J. A. , Computer-Aided Diagnosis of Masses with Full-Field Digital Mammography, Academic Radiology, vol.9, issue.1, pp.4-12, 2002.
DOI : 10.1016/S1076-6332(03)80290-8

R. Malgouyres, F. Brunet, and S. Fourey, Binomial Convolutions and Derivatives Estimation from Noisy Discretizations, International conference on Discrete geometry for computer imagery, pp.370-379, 2008.
DOI : 10.1007/978-3-540-79126-3_33

URL : https://hal.archives-ouvertes.fr/hal-00333776

G. Matheron, Examples of topological properties of skeletons, pp.217-238, 1988.

T. Matsubara, H. Fujita, T. Hara, S. Kasai, O. Otsuka et al., Development of a New Algorithm for Detection of Mammographic Masses, International Workshop on Digital Mammography, pp.139-142, 1998.
DOI : 10.1007/978-94-011-5318-8_22

T. Matsubara, H. Fujita, S. Kasai, M. Goto, Y. Tani et al., Development of new schemes for detection and analysis of mammographic masses, Proceedings Intelligent Information Systems. IIS'97, pp.63-66, 1997.
DOI : 10.1109/IIS.1997.645180

P. Mccullagh and J. A. Nelder, Generalized Linear Models, Monographs on Statistics and Applied Probability. Chapman & Hall, 1989.

J. Mcqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967.

Y. Mingqiang, K. Kidiyo, J. , and R. , A Survey of Shape Feature Extraction Techniques, Pattern Recognition, pp.43-90, 2008.
DOI : 10.5772/6237

T. P. Minka, A comparison of numerical optimizers for logistic regression, 2003.

U. Montanari, Continuous Skeletons from Digitized Images, Journal of the ACM, vol.16, issue.4, pp.534-549, 1969.
DOI : 10.1145/321541.321543

A. Montanvert, Contribution au traitement de formes discrètes: squelettes et codage par graphe de la ligne médiane, 1987.

N. R. Mudigonda, R. M. Rangayyan, and J. E. Desautels, Detection of breast masses in mammograms by density slicing and texture flow-field analysis, IEEE Transactions on Medical Imaging, vol.20, issue.12, pp.201215-1227, 2001.
DOI : 10.1109/42.974917

M. Nagendraprasad, P. Wang, and A. Gupta, Algorithms for Thinning and Rethickening Binary Digital Patterns, Digital Signal Processing, vol.3, issue.2, pp.97-102, 1993.
DOI : 10.1006/dspr.1993.1014

T. Nguyen and I. Debled-rennesson, Curvature Estimation in Noisy Curves, International conference on Computer Analysis of Images and Patterns, pp.474-481, 2007.
DOI : 10.1007/978-3-540-74272-2_59

URL : https://hal.archives-ouvertes.fr/hal-00184127

N. Paragios and R. Deriche, Geodesic active regions and level set methods for supervised texture segmentation, International Journal of Computer Vision, vol.46, issue.3, pp.223-247, 2002.
DOI : 10.1023/A:1014080923068

M. Petrou and P. Garcia-sevilla, Image processing: dealing with texture, 2006.
DOI : 10.1002/047003534X

M. Peura and J. Iivarinen, Efficiency of simple shape descriptors, Third International Workshop on Visual Form, pp.443-451, 1997.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz et al., Adaptive histogram equalization and its variations, Computer Vision, Graphics, and Image Processing, pp.355-368, 1987.
DOI : 10.1016/S0734-189X(87)80186-X

URL : http://repository.tue.nl/694488

M. J. Powell, Radial basis functions for multi-variable interpolation: A review. IMA Conference on Algorithms for the Approximation of Functions and Data RMCS Shrivenham, 1985.

J. M. Prewitt, Object enhancement and extraction. Picture Processing and Psychopictorics, 1970.

F. Provost and T. Fawcett, Robust classification for imprecise environnements, Machine Learning, pp.203-231, 2004.

R. M. Rangayyan, N. M. El-faramawy, J. E. Desautels, A. , and O. A. , Measures of acutance and shape for classification of breast tumors, IEEE Transactions on Medical Imaging, vol.16, issue.6, pp.16799-810, 1997.
DOI : 10.1109/42.650876

R. M. Rangayyan and H. N. Nguyen, Pixel-independent image processing techniques for noise removal and feature enhancement, IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, 1987.

Y. Reyad, A. El-zaart, and H. Mathkour, Segmentation of Fibro-Glandular Discs in Digital Mammograms Using Log-Normal Distribution, IEEE International Conference on Data Engineering and Internet Technology, 2011.
DOI : 10.1007/978-3-642-28807-4_66

L. G. Roberts, Machine perception of three-dimensional solids. Optical and Electrooptical Information processing, pp.159-197, 1963.

P. K. Saha, J. K. Udupa, E. F. Conant, P. Chakraporty, and D. Sullivan, Breast tissue density quantification via digitized mammograms, IEEE Transactions on Medical Imaging, vol.20, issue.8, pp.20792-803, 2001.
DOI : 10.1109/42.938247

B. S. Sahiner, H. P. Chan, N. Petrick, . Helvie, and L. M. Hadjiiski, Improvement of mammographic mass characterization using spiculation measures and morphological features, Medical Physics, vol.27, issue.7, pp.1455-1465, 2001.
DOI : 10.1118/1.1381548

R. Sivaramakrishna, N. A. Obuchowski, W. A. Chilcote, G. Cardenosa, P. et al., Comparing the Performance of Mammographic Enhancement Algorithms, American Journal of Roentgenology, vol.175, issue.1, pp.45-51, 2000.
DOI : 10.2214/ajr.175.1.1750045

R. A. Smith, Iarc handbooks of cancer prevention, Breast cancer screening. Breast Cancer Research, vol.7, issue.54, pp.216-217, 2003.

I. E. Sobel, Camera models and machine perception, Thèse de Doctorat, 1970.

J. Suckling, D. R. Dance, E. Moskovic, D. J. Lewis, and S. G. Blacker, Segmentation of mammograms using multiple linked self-organizing neural networks, Medical Physics, vol.22, issue.2, pp.145-152, 1995.
DOI : 10.1118/1.597464

D. Terzopoulos and K. Fleischer, Deformable models, The Visual Computer, vol.2, issue.6, pp.306-331, 1988.
DOI : 10.1007/BF01908877

P. H. Tsui, Y. Y. Liao, C. C. Chang, W. H. Kuo, K. J. Chang et al., Classification of Benign and Malignant Breast Tumors by 2-D Analysis Based on Contour Description and Scatterer Characterization, IEEE Transactions on Medical Imaging, vol.29, issue.2, pp.513-522, 2010.
DOI : 10.1109/TMI.2009.2037147

M. Unser, Description statistique de la texture. ApplicationàApplicationà l'inspection automatique, Thèse de doctorat, 1984.

N. Vapnik, An overview of statistical learning theory, IEEE Transactions on Neural Networks, vol.10, issue.5, pp.988-999, 1999.
DOI : 10.1109/72.788640

P. Wang and Y. Zhang, A fast and flexible thinning algorithm, IEEE Transactions on Computers, vol.38, issue.5, pp.741-745, 1989.
DOI : 10.1109/12.24276

J. N. Wolfe, Breast patterns as an index of risk for developing breast cancer, American Journal of Roentgenology, vol.126, issue.6, pp.1130-1137, 1976.
DOI : 10.2214/ajr.126.6.1130

D. Zhang and G. Lu, Review of shape representation and description techniques, Pattern Recognition, vol.37, issue.1, pp.1-19, 2004.
DOI : 10.1016/j.patcog.2003.07.008