Skip to Main content Skip to Navigation
New interface

Génération interactive de maillages hexaédriques structurés par blocs

Abstract : The numerical simulation codes based on element and finite volume methods require discretizing the studied domain - for example a mechanical part such as a motor, an airplane wing, a turbine, etc. - using a mesh. In 3 dimensions, a mesh is a set composed of simple volumic elements, most often tetrahedrons or hexahedra, which partition the field of study. The choice of tetrahedrons or hexahedra is mainly dictated by the application (fluid-structure interaction, hydrodynamics, etc.). If the automatic generation of tetrahedral meshes is a relatively controlled process today, generating hexahedral meshes is still an open problem. This is problematic for applications that just imperatively require hexahedral meshes since their generation is done semi-automatically, which can take several weeks to several months of engineer time! While the time devoted to the digital simulation process itself tends to decrease due to the power of the machines used, the bottleneck is now in the preparation of the data, namely to obtain a CAD model adapted to the computation, then generate a mesh.It is in this context that we propose to develop a hybrid approach combining:1. The development of (semi) -automatic algorithms for generating and modifying block-structured hexahedral meshes;2. The implementation of an interactive graphic software dedicated to the manipulation of block structures. The interaction mechanisms will also be used to guide the algorithms in their decision-making, whether at initialization (criteria to be affixed to particular CAD entities) or in the course of an algorithm (decision between several options on which the algorithm cannot pronounce itself).The objective of this thesis is therefore not to provide a universal automatic solution, which seems unattainable at present, but rather to reduce the engineering time devoted to the generation of the mesh by providing more adapted tools. In this context, we propose to place the study as an extension of [LED10, KOW12, GAO15, GAO17], which considered the problem of simplification and enrichment of hexahedral meshes by insertion and removal of mesh layers. In all these works, the proposed algorithms are simple 'greedy' algorithms where the mesh is modified step by step to converge towards a final solution Ef: At each step Ei, one makes the hypothesis that the 'best' solution Ef will be obtained by making the 'optimal' choice for Ei. However, in operational research, such an approach is known to be perfectible since the problem of optimization treated is nonlinear. The idea is to use usual approaches in operational research and more specifically multi-agent systems, coupled to interactive tools, to allow the generation of block structures on complex CA0s.
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Friday, November 18, 2022 - 12:17:27 PM
Last modification on : Wednesday, November 23, 2022 - 10:03:42 PM


Version validated by the jury (STAR)


  • HAL Id : tel-03859633, version 1


Simon Calderan. Génération interactive de maillages hexaédriques structurés par blocs. Interface homme-machine [cs.HC]. Université Paris-Saclay, 2022. Français. ⟨NNT : 2022UPASG049⟩. ⟨tel-03859633⟩



Record views


Files downloads